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1 Multivariate delta method

If the vector-valued function f : Rk → Rm is differentiable at θ and
√
n(Tn − θ)→d T,

then √
n(f(Tn)− f(θ))→d DθT,

where Dθ ∈ Rm×k such that
f(θ + h)− f(θ) = Dθh+ o(||h||).

2 Functional delta method

Φ(P ) is the parameter of interest where Φ is a map from a probability measure P to Rk for some k > 0. For
simplicity, we shall consider the case k = 1.

2.1 Examples

• Mean: Φ(P ) = EP [X]

• kth central moment: Φ(P ) = EP [(X − EPX)k]

• Quantile: Φ(P ) = F−1(q), where F is the cdf associated with P .

Given X1, . . . , Xn ∼i.i.d P , and a parameter of interest Φ(P ), we estimate Φ(P ) by Φ(Pn), where Pn =
1
n

∑n
i=1 δXi .

2.2 Gateaux derivative

Our goal is to get the asymptotic distribution of Φ(Pn). Define the kth derivative Φ(k)
P (H) of the map

t 7→ Φ(P + tH) at t = 0, where H is a perturbation direction. When k = 1,

Φ(1)
P (H) = ∂

∂t
Φ(P + tH)

∣∣∣∣∣
t=0

is Gateaux derivative and we assume that it exists.
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2.3 Taylor type expansion

If the derivatives exist, we have a Taylor type expansion

Φ(P + tH)− Φ(P ) = tΦ′P (H) + 1
2 t

2Φ(2)
P (H) + · · ·+ tm

m!Φ
(m)
P (H) + o(tm)

with some regularity conditions in the hindsight. Setting t = 1/
√
n, H =

√
n(Pn − P ) = Gn, we have

P + tH = Pn. Thus the Taylor expansion transforms to

Φ(Pn)− Φ(P ) = 1√
n

Φ′P (Gn) + 1
2nΦ(2)

P (Gn) + · · ·+ 1
m!

1
nm/2 Φ(m)

P (Gn) + op(n−m/2).

This expansion is the so-called Von-Mises expansion. Assume Φ′P is a linear map, that is, for any H1, H2, we
have

Φ′P (H1 +H2) = Φ′P (H1) + Φ′P (H2).

Setting m = 1 in the Von-Mises expansion, we have

Φ(Pn)− Φ(P ) = 1√
n

Φ′P (Gn) + op(n−1/2)

(by linearity) = 1
n

n∑
i=1

Φ′P (δXi − P ) + op(n−1/2).

So,
√
n(Φ(Pn)− Φ(P )) = 1√

n

n∑
i=1

Φ′P (δXi − P ) + op(1).

Now, we can see that there is hope for applying Central Limit Theorem.

2.4 Influence function

The function x 7→ Φ′P (δx − P ) is called influence function. Observe

Φ′P (δx − P ) = d

dt
Φ(P + t(δx − P ))

∣∣∣∣
t=0

= d

dt
Φ((1− t)P + tδx)

∣∣∣∣
t=0

,

where (1− t)P + tδx characterizes a contaminated model. This expression suggests that the influence function
measures some sensitivity of a contaminated system. This model is also used in Robust M -estimation.

3 Asymptotic distribution for sample quantile

We now apply the above tool for getting the asymptotic distribution for sample quantile. Write Φ(F ) as the
parameter of interest, this is valid and same as Φ(P ) since F uniquely characterizes P . Define Φ(F ) = F−1(q)
that is the qth quantile. We need to calculate

Φ′F (Sx − F ) = d

dt
Φ(Ft)

∣∣∣∣
t=0
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where Ft = (1 − t)F + tSx (we drop the dependence on x for notational purpose) and Sx is the cdf of δx.
Assume qth quantile is unique for Ft for every t, that is, Ft(Φ(Ft)) = q. Taking derivative on both sides with
respect to t we get,

d

dt
Ft(Φ(Ft))

∣∣∣∣∣
t=0

= 0,

d

dt
(1− t)F (Φ(Ft)) + tSx(Φ(Ft))

∣∣∣∣∣
t=0

= 0,

− F (Φ(F )) + f(Φ(F ))Φ′F (Sx − F ) + Sx(Φ(F )) = 0.

Thus, we get
Φ′F (Sx − F ) = F (Φ(F ))− Sx(Φ(F ))

f(Φ(F ))

= q − Sx(F−1(q))
f(F−1(q))

=
{

q−1
f(F−1(q)) F−1(q) ≥ x,

q
f(F−1(q)) F−1(q) < x.

Now suppose X ∼ F . We get
q = F (F−1(q)) = P (X ≤ F−1(q)).

Therefore, we have
EΦ′F (SX − F ) = 0

and
var(Φ′F (SX − F )) = E(Φ′F (SX − F )2) = (q − 1)2q + q2(1− q)

f2(F−1(q)) = q(1− q)
f2(F−1(q)) .

From the Central Limit theorem, we have

√
n(Φ(Pn)− Φ(P )) =

√
n(F−1

n (q)− F−1(q))→d N

(
0, q(1− q)
f2(F−1(q))

)
.

4 Bootstrap inference

4.1 Motivation

1. Approximate complicated/nonstandard limiting distributions
2. Theoretically bootstrap may provide a more accurate approximation.

Let X1, . . . , Xn ∼i.i.d P . Consider the parameter θ and an estimator θ̂n. We can construct confidence interval
as

P
(
θ̂n −Kα

2
σ̂ ≤ θ ≤ θ̂n −K1−α2 σ̂

)
− 1− α,

where σ̂ is a variance estimator for θ̂n. Informally, bootstrap provides a way to compute Kα
2
and K1−α2

systematically by resampling.

4.2 Asymptotic approximation

Suppose X1, . . . , Xn ∼i.i.d P | θ. Estimate P by some Pn. With θ̂n ≡ θ̂n(X1, . . . , Xn) and σ̂n ≡
σ̂n(X1, . . . , Xn), we have an asymptotic characterization of θ̂n−θ

σ̂n
. Thus Kα

2
and K1−α2 can be estimated

based on the asymptotic distribution of θ̂n−θσ̂n
.
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4.3 Bootstrap approximation

With the sample size n, suppose we already have the estimators Pn and θ̂n. Now let X∗1 , . . . , X∗n ∼i.i.d Pn | θ̂n.
Based on the boostrap samples, we have the estimators θ̂∗n ≡ θ̂∗n(X∗1 , . . . , X∗n) and σ̂∗n ≡ σ̂∗n(X∗1 , . . . , X∗n).
Thus in theory, we aim to show, in almost sure sense, that

θ̂∗n − θ̂n
σ̂∗n

→ the limiting distribution of θ̂n − θ
σ̂n

as n→∞. Let

K∗α = arg min
x

{
Pn

(
θ̂∗n − θ̂n
σ̂∗n

≤ x

∣∣∣∣∣X1, . . . , Xn

)
≥ 1− α

}
.

We hope that if Pn is a good approximator to P , then

P

(
θ̂n − θ
σ̂n

≤ K∗α

)
≈ 1− α.

Thus, we have a way from bootstrap to approximate Kα/2 by K∗α/2.
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