STAT 620: Asymptotic Statistics Spring 2022

Lecture: Apr 19

Lecturer: Xianyang Zhang

1 Multivariate delta method

If the vector-valued function $f: \mathbb{R}^k \to \mathbb{R}^m$ is differentiable at θ and

$$
\sqrt{n}(T_n - \theta) \to^d T,
$$

then

$$
\sqrt{n}(f(T_n) - f(\theta)) \to^d D_{\theta}T,
$$

where $D_{\theta} \in \mathbb{R}^{m \times k}$ such that

$$
f(\theta + h) - f(\theta) = D_{\theta}h + o(||h||).
$$

2 Functional delta method

 $\Phi(P)$ is the parameter of interest where Φ is a map from a probability measure P to \mathbb{R}^k for some $k > 0$. For simplicity, we shall consider the case $k = 1$.

2.1 Examples

- Mean: $\Phi(P) = E_P[X]$
- *k*th central moment: $\Phi(P) = E_P[(X E_P X)^k]$
- Quantile: $\Phi(P) = F^{-1}(q)$, where *F* is the cdf associated with *P*.

Given $X_1, \ldots, X_n \sim^{i.i.d} P$, and a parameter of interest $\Phi(P)$, we estimate $\Phi(P)$ by $\Phi(P_n)$, where $P_n =$ $\frac{1}{n}\sum_{i=1}^n \delta_{X_i}$.

2.2 Gateaux derivative

Our goal is to get the asymptotic distribution of $\Phi(P_n)$. Define the *k*th derivative $\Phi_P^{(k)}$ $P_P^{(\kappa)}(H)$ of the map $t \mapsto \Phi(P + tH)$ at $t = 0$, where *H* is a perturbation direction. When $k = 1$,

$$
\Phi_P^{(1)}(H) = \frac{\partial}{\partial t} \Phi(P + tH) \bigg|_{t=0}
$$

is Gateaux derivative and we assume that it exists.

2.3 Taylor type expansion

If the derivatives exist, we have a Taylor type expansion

$$
\Phi(P + tH) - \Phi(P) = t\Phi'_P(H) + \frac{1}{2}t^2\Phi_P^{(2)}(H) + \dots + \frac{t^m}{m!}\Phi_P^{(m)}(H) + o(t^m)
$$

with some regularity conditions in the hindsight. Setting $t = 1/\sqrt{n}$, $H = \sqrt{n}(P_n - P) = G_n$, we have $P + tH = P_n$. Thus the Taylor expansion transforms to

$$
\Phi(P_n) - \Phi(P) = \frac{1}{\sqrt{n}} \Phi'_P(G_n) + \frac{1}{2n} \Phi_P^{(2)}(G_n) + \dots + \frac{1}{m!} \frac{1}{n^{m/2}} \Phi_P^{(m)}(G_n) + o_p(n^{-m/2}).
$$

This expansion is the so-called Von-Mises expansion. Assume Φ'_{P} is a linear map, that is, for any H_1, H_2 , we have

$$
\Phi'_{P}(H_1 + H_2) = \Phi'_{P}(H_1) + \Phi'_{P}(H_2).
$$

Setting $m = 1$ in the Von-Mises expansion, we have

$$
\Phi(P_n) - \Phi(P) = \frac{1}{\sqrt{n}} \Phi'_P(G_n) + o_p(n^{-1/2})
$$

(by linearity)
$$
= \frac{1}{n} \sum_{i=1}^n \Phi'_P(\delta_{X_i} - P) + o_p(n^{-1/2}).
$$

So,

$$
\sqrt{n}(\Phi(P_n) - \Phi(P)) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \Phi'_P(\delta_{X_i} - P) + o_p(1).
$$

Now, we can see that there is hope for applying Central Limit Theorem.

2.4 Influence function

The function $x \mapsto \Phi'_P(\delta_x - P)$ is called influence function. Observe

$$
\Phi'_P(\delta_x - P) = \frac{d}{dt}\Phi(P + t(\delta_x - P))\Big|_{t=0}
$$

=
$$
\frac{d}{dt}\Phi((1-t)P + t\delta_x)\Big|_{t=0},
$$

where $(1-t)P + t\delta_x$ characterizes a contaminated model. This expression suggests that the influence function measures some sensitivity of a contaminated system. This model is also used in Robust *M*-estimation.

3 Asymptotic distribution for sample quantile

We now apply the above tool for getting the asymptotic distribution for sample quantile. Write $\Phi(F)$ as the parameter of interest, this is valid and same as $\Phi(P)$ since *F* uniquely characterizes *P*. Define $\Phi(F) = F^{-1}(q)$ that is the *q*th quantile. We need to calculate

$$
\Phi'_F(S_x - F) = \left. \frac{d}{dt} \Phi(F_t) \right|_{t=0}
$$

where $F_t = (1 - t)F + tS_x$ (we drop the dependence on *x* for notational purpose) and S_x is the cdf of δ_x . Assume *q*th quantile is unique for F_t for every *t*, that is, $F_t(\Phi(F_t)) = q$. Taking derivative on both sides with respect to *t* we get,

$$
\frac{d}{dt}F_t(\Phi(F_t))\Big|_{t=0} = 0,
$$
\n
$$
\frac{d}{dt}(1-t)F(\Phi(F_t)) + tS_x(\Phi(F_t))\Big|_{t=0} = 0,
$$
\n
$$
-F(\Phi(F)) + f(\Phi(F))\Phi'_F(S_x - F) + S_x(\Phi(F)) = 0.
$$

Thus, we get

$$
\Phi'_F(S_x - F) = \frac{F(\Phi(F)) - S_x(\Phi(F))}{f(\Phi(F))}
$$

$$
= \frac{q - S_x(F^{-1}(q))}{f(F^{-1}(q))}
$$

$$
= \begin{cases} \frac{q - 1}{f(F^{-1}(q))} & F^{-1}(q) \ge x, \\ \frac{q}{f(F^{-1}(q))} & F^{-1}(q) < x. \end{cases}
$$

Now suppose $X \sim F$. We get

$$
q = F(F^{-1}(q)) = P(X \le F^{-1}(q)).
$$

Therefore, we have

$$
E\Phi'_F(S_X - F) = 0
$$

and

$$
\text{var}(\Phi'_F(S_X - F)) = E(\Phi'_F(S_X - F)^2) = \frac{(q-1)^2q + q^2(1-q)}{f^2(F^{-1}(q))} = \frac{q(1-q)}{f^2(F^{-1}(q))}.
$$

From the Central Limit theorem, we have

$$
\sqrt{n}(\Phi(P_n) - \Phi(P)) = \sqrt{n}(F_n^{-1}(q) - F^{-1}(q)) \to^d N\left(0, \frac{q(1-q)}{f^2(F^{-1}(q))}\right).
$$

4 Bootstrap inference

4.1 Motivation

- 1. Approximate complicated/nonstandard limiting distributions
- 2. Theoretically bootstrap may provide a more accurate approximation.

Let $X_1, \ldots, X_n \sim^{i.i.d} P$. Consider the parameter θ and an estimator $\hat{\theta}_n$. We can construct confidence interval as

$$
P\left(\hat{\theta}_n - K_{\frac{\alpha}{2}}\hat{\sigma} \le \theta \le \hat{\theta}_n - K_{1-\frac{\alpha}{2}}\hat{\sigma}\right) - 1 - \alpha,
$$

where $\hat{\sigma}$ is a variance estimator for $\hat{\theta}_n$. Informally, bootstrap provides a way to compute $K_{\frac{\alpha}{2}}$ and $K_{1-\frac{\alpha}{2}}$ systematically by resampling.

4.2 Asymptotic approximation

Suppose $X_1, \ldots, X_n \sim^{i.i.d} P \mid \theta$. Estimate P by some P_n . With $\hat{\theta}_n \equiv \hat{\theta}_n(X_1, \ldots, X_n)$ and $\hat{\sigma}_n \equiv$ $\hat{\sigma}_n(X_1,\ldots,X_n)$, we have an asymptotic characterization of $\frac{\hat{\theta}_n-\theta}{\hat{\sigma}_n}$. Thus $K_{\frac{\alpha}{2}}$ and $K_{1-\frac{\alpha}{2}}$ can be estimated based on the asymptotic distribution of $\frac{\hat{\theta}_n - \theta}{\hat{\sigma}_n}$.

4.3 Bootstrap approximation

With the sample size *n*, suppose we already have the estimators P_n and $\hat{\theta}_n$. Now let $X_1^*, \ldots, X_n^* \sim^{i.i.d} P_n \mid \hat{\theta}_n$. Based on the boostrap samples, we have the estimators $\hat{\theta}_n^* \equiv \hat{\theta}_n^*(X_1^*, \ldots, X_n^*)$ and $\hat{\sigma}_n^* \equiv \hat{\sigma}_n^*(X_1^*, \ldots, X_n^*)$. Thus in theory, we aim to show, in almost sure sense, that

$$
\frac{\hat{\theta}^*_n - \hat{\theta}_n}{\hat{\sigma}^*_n} \rightarrow \text{ the limiting distribution of } \frac{\hat{\theta}_n - \theta}{\hat{\sigma}_n}
$$

as $n \to \infty$. Let

$$
K_{\alpha}^* = \arg\min_{x} \left\{ P_n \left(\frac{\hat{\theta}_n^* - \hat{\theta}_n}{\hat{\sigma}_n^*} \leq x \middle| X_1, \dots, X_n \right) \geq 1 - \alpha \right\}.
$$

We hope that if P_n is a good approximator to P , then

$$
P\left(\frac{\hat{\theta}_n - \theta}{\hat{\sigma}_n} \le K_{\alpha}^*\right) \approx 1 - \alpha.
$$

Thus, we have a way from bootstrap to approximate $K_{\alpha/2}$ by $K_{\alpha/2}^*$.