
STAT 689: Large-scale and high-dimensional statistical inference Fall 2024

Lecture 1

1 Motivation
Multiple testing refers to simultaneous testing of more than one hypothesis. Given a set of hypotheses,
multiple testing deals with deciding which hypotheses to reject while guaranteeing some notion of control on
the number of false rejections.

Microarrays were a game-changer for large-scale data analysis in the biomedical field. These revolutionary
devices enabled the assessment of individual gene activity for thousands of genes at once. However, this also
posed a significant challenge of carrying out thousands of simultaneous hypothesis tests with the prospect of
finding only a handful of interesting genes among a vast number of null cases - akin to searching for a needle
in a haystack.

As a specific example, suppose we have m1 prostate cancer patients and m0 normal controls from a microarray
study. Each man’s gene expression levels were measured on a panel of n genes (humans have roughly 20,000
genes), yielding a measurement matrix of the size n × (m0 + m1). Let x

(1)
ij (x(0)

ij ) be the activity of the ith
gene for jth man in the patient (control) group. We ask the question:

• for the ith gene, do the gene expression levels differ between the patient and control groups?

Formally, we can test the null hypotheses:

H0,i : E[x(1)
ij ] = E[x(0)

ij ], i = 1, 2, . . . , n.

For each gene, a two-sample t statistic ti can be computed comparing gene i’s expression levels for the m1
patients with those for the m0 controls. Under the Gaussian assumption on the samples and H0,i, ti follows
the t distribution with m0 + m1 − 2 degrees of freedom. The transformation zi := Φ−1(Fm0+m1−2(ti)) where
Fm is the cdf of a t distribution with m degrees of freedom and Φ−1 is the inverse function of a standard
normal cdf, makes zi standard normal under the null hypothesis, i.e.,

H0,i : zi ∼ N(0, 1).

Of course the investigators were hoping to spot some non-null genes, ones for which the patients and controls
respond differently. A reasonable model for both null and non-null genes assumes that

zi ∼ N(µi, 1)

with µi being the effect size for gene i. Null genes have µi = 0, while the investigators hoped to find genes
with large positive or negative µi effects.

2 Testing the Global Null
The global null concerns asking whether at least one of n null hypotheses is false. In other words, we want to
know if at least one gene has different expression levels for the two groups. Mathematically, the global null is
defined as

H0 = {H0,i is true for all 1 ≤ i ≤ n} = ∩n
i=1H0,i.

Global testing is the task of testing the global null. For each hypothesis H0,i, we can compute a p-value pi

which follows the uniform distribution under H0,i. For instance, we can set pi = Fn0+n1−2(ti) in the prostate
cancer example.
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We remark that for pi to be a valid p-value, we only require it to be super-uniform under the null, i.e.,

PH0,i
(pi ≤ t) ≤ t.

However, for clarity, we shall assume that pi is uniform under the null throughout the following discussions.

2.1 Bonferroni correction
Perhaps the simplest approach to test the global null is Bonferroni’s method/correction. Let α be the desired
Type I error level. The Bonferroni’s method rejects H0 if pi ≤ α/n for some 1 ≤ i ≤ n. In other words, it sets
a tighter threshold for individual hypotheses so that the Type I error for individual hypotheses is controlled
at the level α/n. The Type I error for testing the global null H0 can be computed as

PH0(Bonferroni’s method rejects H0)
=PH0(pi ≤ α/n for some 1 ≤ i ≤ n)

≤
n∑

i=1
PH0(pi ≤ α/n)

=
n∑

i=1

α

n
= α.

Bonferroni’s method is built upon the union bound, which is robust to the arbitrary dependence within the
p-values. When the n p-values are independent, the Šidák correction can be used. Specifically, it rejects H0
whenever pi ≤ 1 − (1 − α)1/n for some 1 ≤ i ≤ n. The Šidák correction controls the Type I error:

PH0(Šidák correction rejects H0)
=PH0(pi ≤ 1 − (1 − α)1/n for some 1 ≤ i ≤ n)
=1 − PH0(pi > 1 − (1 − α)1/n for all 1 ≤ i ≤ n)

=1 −
n∏

i=1
PH0(pi > 1 − (1 − α)1/n)

=1 −
n∏

i=1
(1 − α)1/n = α.

A common misconception is that Bonferroni’s method is conservative, meaning that the size of the Bonferroni
method is much smaller than α. Consider the case where pi’s are independent. The size of the Bonferroni’s
method is

PH0(Bonferroni’s method rejects H0)
=1 − PH0(pi > α/n for all 1 ≤ i ≤ n)

=1 −
n∏

i=1
PH0(pi > α/n)

=1 −
(

1 − α

n

)n

→ 1 − e−α.

With α = 0.1, 1 − e−α = 0.095 and when α = 0.05, 1 − e−α = 0.0488. Bonferroni’s method becomes more
conservative when the p-values have (positive) dependence.

Exercise 1.1: Define z = (z1, . . . , zn). Let E[z] = µ = (µ1, . . . , µn) and cov(z) = Σ = (σij)p
i,j=1, where

Σii = 1 and σij = ρ ∈ (0, 1) for i ̸= j. We are interested in testing the global null that

H0 : µi = 0 for all 1 ≤ i ≤ n.
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versus the alternative that µi ≠ 0 for some i. Let pi = 2(1 − Φ(|zi|)) be the two-sided p-value. For
ρ ∈ {0, 0.1, 0.2, . . . , 0.9}, simulate the z-scores under the global null and perform Bonferroni’s test based on
the two-sided p-values. Repeat the procedure 1,000 times and calculate the percentage of rejections over the
1,000 simulation runs. Report the percentage of rejections for different values of ρ.

2.2 Fisher’s combination test
Fisher’s method is a technique for meta-analysis that combines multiple p-values into one test statistic. We
state two basic facts before introducing the exact form of the test statistic.

• For pi ∼ Unif[0, 1], we have −2 log(pi) ∼ Exp(1/2) =d χ2
2 (where Exp(λ) denotes the exponential

distribution with rate λ). To see this, we note that

P (−2 log(pi) ≤ x) = P (log(pi) ≥ −x/2) = 1 − exp(−x/2).

• Suppose Xi ∼ χ2
ki

are independent χ2 random variables. We have
∑n

i=1 Xi ∼ χ2
k for k =

∑n
i=1 ki.

The Fisher’s combination test statistic is defined as

T = −2
n∑

i=1
log(pi).

Under H0, T follows the χ2
2n distribution. Let q2n(1 − α) be the 1 − α quantile of χ2

2n. We reject the global
null if T > q2n(1 − α).

Unlike Bonferroni’s test, which looks only at the smallest p-value, Fisher’s test can combine weak evidence
against multiple null hypotheses because it is (in some sense) a weighted average over all the p-values. Thus,
Bonferroni’s method works better for detecting a few larger changes (sparse and strong signals/alternatives)
in the individual tests, while Fisher’s test works better for detecting many subtle changes (dense and weak
signals/alternatives).

A related method is the Pearson’s test statistic given by TPear = 2
∑n

i=1 log(1 − pi). Another closely related
approach is called Stouffer’s z-score method. Let Φ be the cdf of N(0, 1). Define zi = Φ−1(1 − pi) which
follows N(0, 1) under H0,i. Under the alternative Ha,i, we expect zi to take large values. Define the test
statistic

Z =
∑n

i=1 zi√
n

which follows N(0, 1) under the global null. An advantage of the z-score test is that it allows weights, i.e.,
one can define

Zw =
∑n

i=1 wizi√∑n
i=1 w2

i

for some weights wi, which again follows N(0, 1) under H0. Similar to Fisher’s test, the z-score test is better
suited for detecting dense and weak signals.

2.3 Cauchy combination test
Cauchy combination test [Liu and Xie (2018)] is a recently developed testing method that has the advantage
of being robust to the dependence among the z-statistics. Suppose each pi is computed from a z-score zi.
Define z = (z1, . . . , zn). Let E[z] = µ and cov(z) = Σ. Under the global null, µ = 0.

The Cauchy combination test is defined as

W =
n∑

i=1
witan[{2Φ(|zi|) − 1.5}π],
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where the weights wis are nonnegative and
∑n

i=1 wi = 1. Under H0,i, pi = 2(1 − Φ(|zi|)) is the two-sided
p-value which follows Unif[0, 1]. We have

P (tan[{2Φ(|zi|) − 1.5}π] ≤ x)
=P (tan((0.5 − pi)π) ≤ x)
=P (1 − pi ≤ 0.5 + arctan(x)/π)
=0.5 + arctan(x)/π,

which suggests that tan[{2Φ(|zi|) − 1.5}π] follows the standard Cauchy distribution.

Assume that (zi, zj) are jointly normal for all 1 ≤ i ̸= j ≤ n. It has been shown in Liu and Xie (2018) that

lim
t→+∞

P (W ≥ t)
P (W0 ≥ t) = 1,

where W0 is a standard Cauchy random variable.

Remark. The above result can be generalized to transformations of p-values to the other heavy tail
distributions, such as levy distribution.

3 Optimality of Bonferroni’s Method
We look deeper into Bonferroni’s method by showing that it enjoys certain optimality in detecting sparse and
strong signals.

The Bonferroni’s method considers the test statistic n min1≤i≤n pi and it rejects the global null if
n min1≤i≤n pi ≤ α. When pi = 2(1 − Φ(|zi|)), the statistic is essentially equivalent to the maximum statistic
M = max1≤i≤n |zi|.

3.1 Gaussian location models
To analyze the maximum statistic, we consider the Gaussian location model:

zi ∼ N(µi, 1), i = 1, 2, . . . , n,

independently over i. The goal here is to test the global null that

H0 : µi = 0 for all 1 ≤ i ≤ n.

Note that n min1≤i≤n pi ≤ α is equivalent to

n min
1≤i≤n

2(1 − Φ(|zi|)) ≤ α

⇐⇒ 1 − max
1≤i≤n

Φ(|zi|) ≤ α/(2n)

⇐⇒ Φ−1(1 − α/(2n)) ≤ max
1≤i≤n

|zi|.

Exercise 1.2: In the one-sided case, we consider the test statistic maxi zi and rejects the null if maxi zi ≥
Φ−1(1 − α/n).

For simplicity, let us consider the one-sided case, where we reject H0 if maxi zi ≥ Φ−1(1 − α/n). Under H0,
zi ∼ N(0, 1) for all i and

maxi zi√
2 log(n)

→p 1. (1)
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Exercise 1.3: Prove (1). Hint: you may use the Mills ratio, which states that for any x > 0,

x

x2 + 1 ≤ 1 − Φ(x)
ϕ(x) ≤ 1

x

where ϕ(x) and Φ(x) are the pdf and cdf of N(0, 1) respectively.

Exercise 1.4: Show that Φ−1(1 − α/n) =
√

2 log(n)(1 + o(1)) as n → +∞.

3.2 Asymptotic power analysis
We aim to study the asymptotic power of the maximum test. To begin with, we need to specify the alternative.
We assume that there is exactly one µi that is nonzero and is equal to µ∗. We shall consider two cases: for
some ϵ > 0

• Case 1 (strong signal): µ∗ = (1 + ϵ)
√

2 log(n);

• Case 2 (weak signal): µ∗ = (1 − ϵ)
√

2 log(n).

From (1), for the signal to be detectable, we require its magnitude µ∗ to be sufficiently larger than
√

2 log(n).
Let us consider the first case where µ∗ = (1 + ϵ)

√
2 log(n). Suppose µ∗ is the mean of the i∗th z-score and

write zi∗ = µ∗ + ξi∗ for ξi ∼ N(0, 1). We note that

P (max
i

zi > Φ−1(1 − α/n))

≥P (ξi∗ + µ∗ >
√

2 log(n)(1 + o(1)))
≥P (ξi∗ >

√
2 log(n)(1 + o(1)) − (1 + ϵ)

√
2 log(n)) → 1.

When µ∗ = (1 − ϵ)
√

2 log(n), we have

P (max
i

zi > Φ−1(1 − α/n))

=1 − P (max
i

zi ≤ Φ−1(1 − α/n))

=1 − P (ξi∗ ≤ Φ−1(1 − α/n) − µ∗)
∏
i ̸=i∗

P (zi ≤ Φ−1(1 − α/n))

=1 − P (ξi∗ ≤ ϵ
√

2 log(n)(1 + o(1)))
(

1 − α

n

)n−1

→1 − exp(−α).

3.3 Optimality against sparse alternatives
From the above discussions, we know that Bonferroni’s method has trivial power when µ∗ is below the
detection threshold

√
2 log(n). A natural question to ask here is whether there exists some test that has

non-negligible asymptotic power in this scenario. We show below that this detection threshold cannot be
improved using any test of the global null against the sparse alternative.

To prove this, we reduce our composite alternative to a simple hypothesis and show that the optimal test
given by the Neyman-Pearson Lemma still does no better than flipping a biased coin. In particular, we
assume that

Ha : {µi} ∼ π,

where π denotes a joint distribution on {µi} which randomly select i∗ ∈ {1, 2, . . . , n} and set µi∗ =
(1 − ϵ)

√
2 log(n) and other µis to be zero.

Note that we have a simple null and a simple alternative in this case. Let z = (z1, . . . , zn). Recall that
zi = µi + ξi, where ξi ∼ N(0, 1). We first write down the joint densities of z under both the null and the
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alternative:

f0(z) =
n∏

i=1

1√
2π

exp
(

−z2
i

2

)
,

fa(z) = 1
n

n∑
j=1

1√
2π

exp
(

− (zj − µ∗)2

2

) ∏
i ̸=j

1√
2π

exp
(

−z2
i

2

)
,

where we have a n-component mixture distribution under Ha. The likelihood ratio is given by

l(z) = fa(z)
f0(z) = 1

n

n∑
j=1

exp
(

zjµ∗ − (µ∗)2

2

)
.

Exercise 1.5: Show that under H0, l(z) →p 1.

To construct a α level test, we find q1−α such that

PH0(l(z) ≥ q1−α) =
∫

l(z)≥q1−α

dP0(z) = α,

where P0 and Pa denote the distributions of z under the null and alternative respectively. We now study the
power of the test (denoted by βn) under H1. Note that

βn =PHa(l(z) ≥ q1−α)

=
∫

l(z)≥q1−α

dPa(z)

=
∫

l(z)≥q1−α

dPa(z)
dP0(z)dP0(z)

=
∫

l(z)≥q1−α

{l(z) − 1}dP0(z) +
∫

l(z)≥q1−α

dP0(z)

=
∫

l(z)≥q1−α

{l(z) − 1}dP0(z) + α.

As l(z) →p 1 under the null, using the dominated convergence theorem, we have∫
l(z)≥q1−α

{l(z) − 1}dP0(z) → 0,

suggesting that βn → α. In other words, the likelihood ratio test has

PH0(Type I error) + PH1(Type II error) → 1,

where PH1(Type II error) = 1 − βn.
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