
STAT 689: Large-scale and high-dimensional statistical inference Fall 2024

Lecture 10: Part I

1 Variable selection problem
Consider a response variable Y and a set of covariates X1, . . . , Xp in the number of thousands or millions. We
want to select a subset of interesting covariates that can affect the response Y . For example, in a genome-wide
association study (GWAS), we may be interested in selecting genes Xj that a phenotype Y of interest truly
depends on. Mathematically, we define the null variable to be the one that satisfies

Y ⊥⊥ Xj |X−j

that is Xj is conditionally independent of Y given X−j = {Xi : 1 ≤ i ≤ p, i ̸= j}.

Consider a linear model

Y =
p∑

j=1
Xjβj + ϵ,

where ϵ ∼ N(0, σ2) which is independent of the covariates (X1, . . . , Xp). In this case, testing Y ⊥⊥ Xj |X−j

is equivalent to testing βj = 0. Many variable selection methods compute an important statistic for each
covariate. These statistics serve as a basis for deciding whether to include the variable in our model. For
example, the feature importance statistic may be the magnitude of a coefficient computed with the Lasso,
the point at which a variable enters the Lasso path or even a more complicated feature importance statistic
computed with random forests or neural nets.

2 Conditional randomization tests
The conditional randomization tests work as follows. Suppose we know the conditional distribution of Xj

given X−j . Then, we can sample a synthetic null X̃j from this conditional distribution. Under the null
H0,j : Y ⊥⊥ Xj |X−j , we have

P(Y, Xj , X−j) =P(Y, Xj |X−j)P(X−j)
=P(Xj |X−j)P(Y |X−j)P(X−j)
=P(X̃j |X−j)P(Y |X−j)P(X−j)
=P(Y, X̃j , X−j).

In words, (Xj , X−j , Y ) and (X̃j , X−j , Y ) have the same joint distribution when Y ⊥⊥ Xj |X−j . Thus, we can
test if

(Y, Xj , X−j) d= (Y, X̃j , X−j)

to decide if Xj is under the null.

By generating multiple samples from the conditional distribution of Xj given X−j , we can compute the
p-values for testing H0,j .

1. Compute an important statistic Tj = T (Y, Xj , X−j) (assume that a larger value provides stronger
evidence against the null).

2. For b = 1, 2, . . . , B, sample X̃
(b)
j from the the conditional distribution of Xj given X−j and compute

T
(b)
j = T (Y, X̃

(b)
j , X−j).
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3. Compute

pj :=
1 +

∑B
b=1 1{T

(b)
j ≥ Tj}

B + 1 .

Remark. In practice, we have multiple samples. So you can think of Xj = (Xj,1, . . . , Xj,n), where Xj,i is
the jth covariate from the ith sample.

Note that if Xj is indeed null, then the resulting pj is indeed a p-value. This follows since, under the null,

(Y, Xj , X−j) d= (Y, X̃
(b)
j , X−j)

would hold for all b and hence Tj , T
(1)
j , . . . , T

(B)
j are identically distributed.

Exercise 10.1: Show that when Xj is null, for any α ∈ (0, 1), we have

P(pj ≤ α) ≤ α.

Notice that in the above procedure, it is crucial to sample from the conditional, and not the marginal of Xj ,
in order to preserve the dependence structure between Xj and the other covariates. For example, suppose we
have X1, X2, and Y with cov(X1, X2) = 0.5 and

Y = X2 + ϵ, ϵ ∼ N(0, σ2).

Here E[X1] = E[X2] = 0 and ϵ is independent of (X1, X2). Then, we have

E[Y X1] = E[(X2 + ϵ)X1] = E[X2X1] = 0.5.

If X̃1 is generated according to the marginal distribution of X1, then X̃1 is independent of Y and hence

E[Y X̃1] = 0 ̸= E[Y X1] = 0.5,

even though X1 is null in the above model. Therefore, sampling from the marginal does not provide good
control: X1 would likely appear to be significant since we would expect the resulting p-value from the above
procedure to be small.

3 Knockoffs: the fixed design case
Consider the linear model

Y = Xβ + ϵ,

where Y ∈ Rn×1 is a response variable, X ∈ Rn×p, β = (β1, . . . , βp)⊤ ∈ Rp is a vector of coefficients,
and ϵ ∈ Rn×1 ∼ N(0, σ2In). Suppose we have a variable selection method that returns a set of indices
Ŝ ⊆ {1, 2, . . . , p}. In the context of variable selection, we define the FDR to be

FDR = E

[
#{j : βj = 0, j ∈ Ŝ}

1 ∨ |Ŝ|

]

where |Ŝ| denotes the size of the set Ŝ.

The goal of the knockoff filter is to provide a variable selection method that controls the FDR at level α for
any finite sample of data whenever the number of observations n is larger than the number of variables p.
Below, we describe the knockoff filter for the case of fixed design matrix X.
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3.1 Constructing the knockoffs
Let Σ = X⊤X ∈ Rp×p be the Gram matrix and Xj be the jth column of the design matrix X. In practice,
we can normalize the columns of X so that X⊤

j Xj = 1 for all j. We construct a knockoff copy X̃j such that

A. X̃⊤X̃ = Σ

B. X⊤X̃ = Σ − diag(s)

where X̃ = [X̃1, . . . , X̃p] and s = (s1, . . . , sp) with si ≥ 0. The above requirements imply that

1. X̃⊤
j X̃k = X⊤

j Xk for all 1 ≤ j, k ≤ p;

2. X⊤
j X̃k = X⊤

j Xk for 1 ≤ j ̸= k ≤ p;

3. X⊤
j X̃j = X⊤

j Xj − sj = 1 − sj for 1 ≤ j ≤ p.

Exercise 10.2: A strategy to construct the knockoff copies is through the following method. Choose the
non-negative vector s such that 2Σ − diag(s) is positive semi-definite.

• Show that G := 2diag(s) − diag(s)Σ−1diag(s) is positive semi-definite. As a result, there exists a
Cholesky decomposition C such that C⊤C = G.

• Set X̃ = X(Ip − Σ−1diag(s)) + ŨC, where U ∈ Rn×p is an orthonormal matrix that is orthogonal to
the span of the features of X. Show that X̃ satisfies the above requirements.

3.2 Calculate statistics
We define statistics Tj for each variable such that large positive values give evidence against the null hypothesis
(or support that the jthe variable is a signal). One way to construct such a statistic is through Lasso. The
Lasso estimator for the regression coefficients can be defined as

β̂(λ) = argminb
{

∥Y − Xb∥2
2 + λ∥b∥1

}
where ∥ · ∥p denotes the lp norm of a vector, and λ is a tuning parameter. As λ gets larger, the components
of β̂(λ) gets smaller in absolute value. For each j, we let

Zj = sup{λ ≥ 0 : β̂j(λ) ̸= 0},

which is the largest λ such that the jth variable enters the model.

To use the knockoff method, we first run Lasso on an augmented matrix, which consists of concatenating the
original design and knockoff design matrices, which can be written as [X, X̃]. The Lasso method gives 2p
statistics, namely Z1, . . . , Zp and Z̃1, . . . , Z̃p. Next, we define

Wj =
{

Zj if Zj > Z̃j ,

−Z̃j if Zj < Z̃j .

3.3 Calculate the cutoff to control FDR
For a desired FDR level α, we define the threshold

T = min
{

t ∈ W : 1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1 ≤ α

}
,

where W = {|Wj | : j = 1, 2, . . . , p} \ {0}. This is essentially the BC procedure we have learned before. The
constant one in the numerator is essential for achieving the FDR control in theory. The selected model Ŝ is
given by

Ŝ = {j : Wj ≥ T}.
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Theorem. The above procedure controls the FDR at level α, i.e.,

FDR = E

[
#{j : βj = 0, j ∈ Ŝ}

1 ∨ |Ŝ|

]
≤ α.

Proof. Check Barber and Candès (2015, AOS). This proof relies on showing that Wj for βj = 0 is symmetric
about zero.

3.4 Rationale behind knockoffs
We first try to answer the question of why X̃ has to be constructed in the above way. The knockoff dataset
X̃ can be thought of as the solution to the desired correlation structure:

[X, X̃]⊤[X, X̃] =
(

Σ Σ − diag(s)
Σ − diag(s) Σ

)
= Γ,

where the first equality follows from Conditions (A)-(B). The condition that G is positive semi-definite
ensures that Γ is positive semi-definite.

Let S = {j : βj ̸= 0} be the active set. For j ∈ S, we expect Zj to be greater than Z̃j and hence Wj = Zj > 0.
On the other hand, if j /∈ S, intuitively Xj and X̃j play the same role. So we expect Wj to be Zj (or −Z̃j)
with the same probability, i.e., sign(Wj) ∼ Bern(0.5). Therefore, we have

#{j : Wj ≥ t, j /∈ S} ≈ #{j : Wj ≤ −t, j /∈ S}

which implies that

FDP(t) ≤ 1 + #{j : Wj ≥ t, j /∈ S}
#{j : Wj ≥ t} ∨ 1 ≈ 1 + #{j : Wj ≤ −t, j /∈ S}

#{j : Wj ≥ t} ∨ 1 ≤ 1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1 .

So, the LHS can be viewed as a conservative estimate of the FDP based on the rejection rule Wj ≥ t.

What properties do Wj ’s have to satisfy in general? Let W = (W1, . . . , Wp). Write [X, X̃]swap(S̃) to mean
that the columns Xj and X̃j have been swapped in the matrix [X, X̃] for each j ∈ S̃, where S̃ ⊆ {1, 2, . . . , p}.
Suppose

W = W([X, X̃], Y) = f([X, X̃]⊤[X, X̃], [X, X̃]Y),

for some function f . We require W to obey the antisymmetry property

Wj([X, X̃]swap(S̃), Y) = Wj([X, X̃], Y) ·

{
+1 if j /∈ S̃,

−1 if j ∈ S̃.

Moreover, we require

(W1, . . . , Wp) d= (W1e1, . . . , Wpep),

where ej = 1 for j ∈ S and P (ej = ±1) = 1/2 for j /∈ S.

3.5 How to choose s?
Intuitively, we want X̃j to be different from Xj . Note that by construction, X⊤

j X̃j = 1 − sj . Thus, we want
to make |1 − sj | as small as possible. One way to choose sj ’s is by solving the following optimization problem:

min
s

∑
j

|1 − sj |

subject to sj ≥ 0 and 2Σ − diag(s) is positive semi-definite.
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