
STAT 689: Large-scale and high-dimensional statistical inference Fall 2024

Lecture 10: Part II

1 Knockoffs: the random design case
In contrast to the setting in the previous lecture, we focus here on the cases where the covariates are random.
Our goal is to construct a set of control variables X̃ ∈ Rn×p (a.k.a Model-X knockoffs) with the following
properties:

1. Pairwise Exchangeability: for any index set S ⊂ {1, 2, . . . , p}, we have that [X, X̃] d= [X, X̃]swap(S) or
equivalently

XS , X−S , X̃S , X̃−S
d= X̃S , X−S , XS , X̃−S

2. Response Independence: X̃ are constructed such that Y ⊥ X̃|X. This is guaranteed if X̃ is constructed
without looking at Y

Here XS is the submatrix of X with the columns in the set S. When S = {j}, we require that

Xj , X−j , X̃j , X̃−j
d= X̃j , X−j , Xj , X̃−j .

Importantly, it is not sufficient to choose a permutation of the rows of X. Let X̃ be a permutation of the
rows of matrix X, then Pairwise Exchangeability does not hold because the correlation structure between Xj

(the jth column of X) and X−j is not preserved when replacing Xj with X̃j .

If the distribution of X (denoted by PX) is exactly known, it is possible to construct knockoff variables X̃
that satisfy the above properties. We shall discuss methods for doing so.

Lemma. For any subset S ⊆ N0 (i.e., the null set), we have

[X, X̃]|Y d= [X, X̃]swap(S)|Y.

Proof. It is equivalent to show that

([X, X̃], Y) d= ([X, X̃]swap(S), Y).

Without loss of generality, let us assume S = {1, 2 . . . , m} ⊆ N0 for m ≤ n. By row independence, it suffices
to show that

((X, X̃), Y ) d= ((X, X̃)swap(S), Y ).

By our assumption that (X, X̃) d= (X, X̃)swap(S), we only need to show that

Y |(X, X̃) d= Y |(X, X̃)swap(S).

Letting PY |X(y|x) be the conditional distribution of Y given X, observe that

PY |(X,X̃)swap(S)
(y|(x, x̃)) = PY |(X,X̃)(y|(x, x̃)swap(S)) = PY |X(y|x′),

where x′
i = x̃i for i ∈ S and x′

i = xi otherwise. The second equality above comes from the fact that Y is
conditionally independent of X̃ given X. Since Y ⊥ X1|X2:p, we have

PY |X(y|x̃1, x′
2:p) = PY |X2:p(y|x′

2:p) = PY |X(y|x1, x′
2:p) = PY |(X,X̃)swap(S\{1})

(y|(x, x̃)).

1



This shows that

Y |(X, X̃)swap(S)
d= Y |(X, X̃)swap(S\{1}).

We can repeat this argument with the second variable, the third, and so on until S is empty.

Given the knockoff matrix X̃, we can construct feature importance statistics Zj := Tj(Y, X, X̃) for measuring
the importance of Xj and Z̃j := Tp+j(Y, X, X̃) for measuring the importance of X̃j .

Why is it important to use both X and X̃ as control variables inputted into Tj(Y, X, X̃)? It is instructive to
consider the example where

Y = X2 + ϵ, ϵ ∼ N(0, 1)

where ϵ is independent of (X1, X2) and X1, X2 are strongly correlated. If we just compared Tj(Y, X1, X2)
to Tj(Y, X̃1, X̃2) to determine variable importance, then since X1 is correlated with X2, it may be that
T1(Y, X1, X2) would be large since the null variable X1 is correlated with the non-null variable X2, while
T1(Y, X̃1, X̃2) would be small since Y ⊥ (X̃1, X̃2) by construction; as such, we would spuriously “reject” H1.

Figure 1: Plots of LASSO coefficient magnitudes estimated from data containing 500 null variables colored
light blue concatenated with either 500 permuted control variables colored dark blue or knockoff variables.

Let
T (Y, X, X̃) = (Z, Z̃) = (Z1, . . . , Zp, Z̃1, . . . , Z̃p).

Assume the natural property that switching a variable with its knockoff simply switches the components of T
in the same way, namely, for each S ⊆ {1, ..., p},

(Z, Z̃)swap(S) = T (Y, [X, X̃]swap(S)).

We can show the following result.

Exercise 10.3. For any index set S ⊂ N0, we have

(Z, Z̃)swap(S)
d= (Z, Z̃).

1.1 The FDR controlling procedure
We construct the knockoffs-adjusted scores Wj = wj(Zj , Z̃j) via some anti-symmetric function w(·, ·) such
that w(x, y) = −w(y, x). One example is that w(x, y) = x − y.

Lemma. For any null index j ∈ N0, the distribution of Wj is symmetric about zero. Therefore, P (sign(Wj) =
1) = P (sign(Wj) = −1) = 1/2, i.e., Wj is a Rademacher random variable. Moreover, conditional on
{|Wj | : 1 ≤ j ≤ p}, sign(Wj)s are i.i.d Rademacher random variables.
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Proof. We only show the first fact. Consider any measurable set A ⊆ R. Because (Zj , Z̃j) d= (Z̃j , Zj) by the
exercise,

Pr(wj(Zj , Z̃j) ∈ A) = Pr((Zj , Z̃j) ∈ w−1
j (A)) = Pr((Z̃j , Zj) ∈ w−1

j (A)) = Pr(−wj(Zj , Z̃j) ∈ A),

which shows that Wj is symmetric about zero.

Since Wj is symmetrically distributed under the null, it is equally likely that Wj ≥ t and Wj ≤ −t. Let

S+(t) := {j : Wj ≥ t} and S−(t) := {j : Wj ≤ −t}.

Under the alternative, we expect Wj to take a large positive value. Similar to the fixed design case, we can
construct the following “conservative” estimate of FDP(t):

FDP(t) = |{j ∈ N0 : Wj ≥ t}|
1 ∨ |S+(t)| ≈ |{j ∈ N0 : Wj ≤ −t}|

1 ∨ |S+(t)| ≤ 1 + |S−(t)|
1 ∨ |S+(t)| := F̂DP(t).

Define

τq = min
{

t : F̂DP(t) ≤ q
}

.

Then, we reject all Hj with Wj ≥ τq.

Theorem. The knockoff procedure controls the FDR.

Proof. The proof is based on the optional stopping theorem. First, since we reject all Hj such that j ∈ S+(τq),
we can write the FDP using the threshold τq as follows:

FDP(τq) = |N0 ∩ S+(τq)|
|S+(τq)| ∨ 1

= |N0 ∩ S+(τq)|
1 + |N0 ∩ S−(τq)|

1 + |N0 ∩ S−(τq)|
|S+(τq)| ∨ 1

≤ |N0 ∩ S+(τq)|
1 + |N0 ∩ S−(τq)|

1 + |S−(τq)|
|S+(τq)| ∨ 1

≤q
|N0 ∩ S+(τq)|

1 + |N0 ∩ S−(τq)| .

As such, let V +(τq) := |N0 ∩ S+(τq)| and V −(τq) := |N0 ∩ S−(τq)|. To show that FDR(τq) = E[FDP(τq)] ≤ q,
it suffices to show that

E
[

|N0 ∩ S+(τq)|
1 + |N0 ∩ S−(τq)|

]
= E

[
V +(τq)

1 + V −(τq)

]
≤ 1. (1)

Next, akin to the argument used in the empirical process perspective-based proof that the BH procedure
controls FDR, we will argue that V +(t)/(1 + V −(t)) is a supermartingale with respect to the filtration
Ft := {σ(V ±(u))}u≤t with t increasing from 0 so that we can apply Doob’s Optional Stopping Theorem.
Consider any s ≥ t, and note that, conditional on V +(s) + V −(s), V +(s) has a hypergeometric distribution.
Then it can be shown that (Why? Check the supplement of Barber and Candès (2015))

E
[

V +(s)
1 + V −(s)

∣∣∣∣V ±(t), V +(s) + V −(s)
]

≤ V +(t)
1 + V −(t) , (2)

which is exactly what is required for V +(t)/(1 + V −(t)) to be a supermartingale. As a prelude to applying
Doob’s Optional Stopping Theorem, recall that if Y ∼ Bin(n0, 1/2), E[Y/(1 + n0 − Y )] ≤ 1 (why?). Since
V +(0) ∼ Bin(|N0|, 1/2) (why?), then by combining Doob’s Optional Stopping Theorem with this fact, we
have that

FDR ≤ qE
[

V +(τq)
1 + V −(τq)

]
≤ qE

[
V +(0)

1 + V −(0)

]
= qE

[
V +(0)

1 + |N0| − V +(0)

]
≤ q, (3)

as required.
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2 Constructing knockoff copies
2.1 The Gaussian case
We first consider the case where X is Gaussian. For simplicity, let X = (X1, X2) ∼ N(0, Σ), where
Σ = (σij)2

i,j=1. Let X̃ = (X̃1, X̃2) be our knockoff copy. By the pairwise exchangeability,

(X1, X2, X̃1, X̃2) d= (X̃1, X̃2, X1, X2)

and thus

(X1, X2) d= (X̃1, X̃2).

The joint distribution of (X1, X2, X̃1, X̃2) is N(0, G), where G should have the structure:

G =
(

Σ ∗
∗ Σ

)
.

Again, by the pairwise exchangeability,

(X1, X2, X̃1, X̃2) d= (X1, X̃2, X̃1, X2)

and hence

(X1, X2) d= (X1, X̃2) d= (X̃1, X2).

We can show that

G =


σ11 σ12 ∗ σ12
σ12 σ22 σ12 ∗
∗ σ12 σ11 σ12

σ12 ∗ σ12 σ22

 =
(

Σ Σ − diag(s)
Σ − diag(S) Σ

)
,

where s = (s1, s2). where s is a 2-vector. Ideally, we would like the ∗ elements of G to be 0. We would then
have that X1 and X̃1 are independent, and X2 and X̃2 are independent. Although this is sometimes possible,
it is not always the case. Structurally, we know that G must be a symmetric, positive definite matrix to be a
covariance matrix. A possible relaxation is to solve the optimization problem

min
s1,s2

|σ11 − s1| + |σ22 − s2|

subject to that G is positive semi-definite.

Once we determine the value of s, we can derive the conditional distribution X̃|X. We can then sample X̃i

from this distribution given X = Xi, where Xi is the ith observation with 1 ≤ i ≤ n.

2.2 The General case
Candès et al. (2018, JRSSB) and Sesia et al. (2018, Biometrika) presented an algorithm (Sequential
Conditional Independence Pairs or SCIP) for generating knockoffs in the general case. Let X = (X1, . . . , Xp) ∼
PX , where PX is known. SCIP is motivated by the following observation.

Observation. The random variables (X̃1, . . . , X̃p) are model-X knockoffs for (X1, . . . , Xp) if and only if
for any j ∈ {1, 2, . . . , p}, the pair (Xj , X̃j) is exchangeable conditional on all the other variables and their
knockoffs, i.e., X−j , X̃−j .

If the components of the vector X are independent, then any independent copy of X would work; that is,
any vector X̃ independently sampled from the same joint distribution as X would work. In general, we can
consider the sequential procedure.

• For j = 1, 2, . . . , p, sample X̃j from the law of Xj |X−j , X̃1:j−1.
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Theorem. The variables generated in this way are Model-X knockoffs.

Proof. We only prove the results when the variables are discrete. The proof is based on

Induction hypothesis: At the jth step, (Xk, X̃k) are exchangeable in the joint distribution of X1, . . . , Xp

and X̃1, . . . , X̃j for k = 1, 2 . . . , j.

Clearly, X1 and X̃1 are exchangeable conditional on X−1. Suppose the induction hypothesis is true for j − 1.
We hope to show the induction hypothesis for j.

Below, we denote the probability mass function (PMF) of (X1:p, X̃1:j−1) by P (X−j , Xj , X̃1:j−1). Note that
X̃j is sampled from the law of Xj |X−j , X̃1:j−1. Thus, the law of X̃j conditional on X−j , X̃1:j−1 is given by

P (X−j , X̃j , X̃1:j−1)∑
u P (X−j , u, X̃1:j−1)

.

Thus the joint PMF of (X1:p, X̃1:j) is given by

P (X1:p, X̃1:j) =P (X̃j |X1:p, X̃1:j−1)P (X1:p, X̃1:j−1)
=P (X̃j |X−j , X̃1:j−1)P (X1:p, X̃1:j−1)

=P (X−j , X̃j , X̃1:j−1)P (X−j , Xj , X̃1:j−1)∑
u P (X−j , u, X̃1:j−1)

,

which is symmetric in Xj and X̃j . By the induction hypothesis, P (X−j , X̃j , X̃1:j−1) is symmetric in (Xk, X̃k)
for k = 1, 2, . . . , j − 1. Therefore, P (X1:p, X̃1:j) is symmetric in (Xk, X̃k) for all k = 1, 2, . . . , j.

Although this method allows for sampling knockoffs from arbitrary known distributions, it may be infeasible
to compute. Consider the example (Ising model) where

P (X = x) ∝ exp

−
∑
i,j

βijxixj −
∑

i

αixi

 ,

where x = (x1, . . . , xp) with xi = ±1. In this case, the algorithm is infeasible to compute if p is large.

2.3 Markov models
Instead, if X is described by a Markov or hidden Markov model, then SCIP is much easier to compute. Let
X = (X1, . . . , Xp) ∼ MC(q1, Q) be a Markov chain, where q1 is the distribution of X1 and Q is the transition
distribution. The Markov property dictates that Xi|X1:(i−1)

d= Xi | Xi−1. It follows by the definition of
conditional probability that the probability density of X is

p(X1, . . . , Xp) = q1(X1)
p∏

j=2
Qj(Xj | Xj−1).

In this case, we can implement SCIP efficiently. We consider the p = 4 case, although this procedure will
hold for all integers p ≥ 1. Let X be the state space of X. We first sample X̃1 from X1 | X−1. It follows by
Bayes’s theorem and the Markov property that

p(X1 = x̃1 | X−1 = x−1) ∝ q1(x̃1)Q2(x2 | x̃1).

We can calculate the normalizing constant as N1(x2) =
∑

l∈X q1(l)Q2(x2 | l). We can now sample X̃2 from
X2 | X−2, X̃1 as

p(X̃2 = x̃2 | X−2 = x−2, X̃1 = x̃1) ∝ Q2(x̃2 | x1)Q3(x3 | x̃2)Q2(x̃2 | x̃1)
N1(x̃2) .
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Figure 2: Schematic representation of the learning mechanism of a knockoff machine.

It follows that the normalization constant is N2(x2) =
∑

l∈X Q2(l | x1)Q3(x3 | l)Q2(l|x̃1)
N1(l) . This pattern

continues as

p(X̃3 = x̃3 | X−3 = x−3, X̃1 = x̃1, X̃2 = x̃2) ∝ Q3(x̃3 | x2)Q4(x4 | x̃3)Q3(x̃3 | x̃2)
N2(x̃3) ,

with
N3(x2, x̃2, x4) =

∑
l∈X

Q3(l | x2)Q4(x4 | l)Q3(l | x̃2)
N2(l) ,

and
p(X̃4 = x̃4 | X−4 = x−4, X̃1 = x̃1, X̃2 = x̃2, X̃3 = x̃3) ∝ Q4(x̃4 | x3)Q4(x̃4 | x̃3)

N3(x̃4) ,

with
N4(x3, x̃3) =

∑
l∈X

Q4(l | x3)Q4(l | x̃3)
N3(l) .

2.4 Deep learning based approaches
More recently, novel research has been conducted on generating knockoffs of X when the distribution of X is
unknown using neural networks, such as KnockoffGAN, and Deep knockoffs based on the so-called Maximum
Mean Discrepancy. Please refer to Jordon et al. (2019, ICLR) and Romano et al. (2020, JASA). Here, we
provide a high-level description of the idea.

Given n independent p-dimensional samples {Xi}n
i=1 from an unknown distribution PX , a generative model

approximating the true PX is sought to synthesize new observations that could plausibly belong to the
training set while being sufficiently different to be non-trivial. Modern approaches include

• variational autoencoders;

• generative adversarial networks;

• diffusion models.
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Let Vi be an external random variable (e.g., Vi ∼ N(0, Ip)). We generate X̃i = fθ(Xi, Vi), where θ is the
parameter to be optimized. Let X̃ = [X̃1, . . . , X̃n]⊤. We need a measure to quantify the discrepancy between
the distributions of [X, X̃] and [X, X̃]swap({j}). Let J be such a measure. Examples include

• maximum mean discrepancy [Gretton et al. (2012, JMLR)] and energy distance;

• Wasserstein metric;

• Jensen-Shannon divergence.

Then, we can define
p∑

j=1
J([X, X̃], [X, X̃]swap({j})).

and find θ to minimize this objective function. In practice, the optimization is often performed through
stochastic gradient descent (SGD) or Adam.
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