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Lecture 11

1 Conformal prediction
Conformal prediction is a relatively new framework for quantifying uncertainty in the predictions made by
arbitrary prediction algorithms. Fundamentally, it does so by converting an algorithm’s predictions into
prediction sets, which have strong finite-sample coverage properties.

2 Distribution-free predictive inference
Conformal inference is motivated by the problem of distribution-free predictive inference, which can be
described as follows. Consider a data set Dn := {(Xi, Yi)}n

i=1 drawn independently from the distribution
PXY = PX × PY |X on X × Y. Here, we can think of {Xi} as a set of covariates and {Yi} as the responses.
Let Xn+1 be generated from PX . Our goal is to construct a prediction set C(Xn+1) := C(Dn, α, Xn+1) for
Yn+1 which satisfies that

P(Yn+1 ∈ C(Xn+1)) ≥ 1 − α,

where the probability is taken over all n + 1 points and α ∈ (0, 1) is a predefined confidence level. A trivial
way to achieve this is by setting

C(Xn+1) =
{

Y with probability 1 − α,

∅ with probability α.

So the real question is: can we achieve the desired coverage in finite samples, without any assumptions on P,
by doing something “nontrivial”? In particular, we would like our strategy to adapt to the hardness of the
problem in the following sense: the more easily we can predict Yn+1 from Xn+1, the smaller we would like
our set C(Xn+1) to be.

2.1 Basic idea
The basic idea behind conformal prediction is two-fold. The first key idea can actually be explained in
a simpler context, where there are no covariates at all, and we have a sequence of responses Yi ∈ R for
i = 1, 2, . . . , n. Our goal here is to find qn such that

P(Yn+1 ≤ qn) ≥ 1 − α. (1)

A nature idea would be to set qn as the 1 − α sample quantile of Y1, . . . , Yn, which would lead to

P(Yn+1 ≤ qn) ≈ 1 − α.

This would become exact as n → +∞. But the question here is whether (1) can be fulfilled exactly in finite
sample.

2.2 Exchangeability
The key to achieve (1) is to explore the exchangeability among (Y1, . . . , Yn+1). As Y1, . . . , Yn+1 are i.i.d,
{Y1, . . . , Yn+1} are exchangeable, meaning that for any permutation π of {1, 2, . . . , n}, (Y1, . . . , Yn+1) and
(Yπ(1), . . . , Yπ(n+1)) have the same joint distribution. Therefore, the rank of Yn+1 among {Y1, . . . , Yn+1} is
uniformly distributed over {1, . . . , n + 1}.
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Proposition. We have

P(Yn+1 is among the ⌈(1 − α)(n + 1)⌉ smallest of Y1, . . . , Yn+1) ≥ 1 − α.

Set k = ⌈(1 − α)(n + 1)⌉ for the ease of notation. Let A be the event that Yn+1 is among the ⌈(1 − α)(n + 1)⌉
smallest of Y1, . . . , Yn+1. Let Y(1) ≤ Y(2) ≤ · · · Y(n) be the order statistics and qn = Y(k).

Exercise 11.1: Prove that A is equivalent to the event that

Yn+1 ≤ qn = Y(k).

Hint: show that Ac is equivalent to Yn+1 > qn.

With the result of Exercise 11.1, the proposition would imply that

P(Yn+1 ≤ qn) = P(A) ≥ 1 − α.

Proof of Proposition. Let Y(1) ≤ Y(2) ≤ · · · Y(n+1) and note that Yn+1 is equally likely to take any of the
values in {Y(j) : j = 1, 2, . . . , n + 1}. We have

P(A) ≥ k

n + 1 = ⌈(1 − α)(n + 1)⌉
n + 1 ≥ 1 − α,

where the inequality accounts for the fact that there could be ties among Y1, . . . , Yn+1, e.g., there are multiple
Yi’s that are equal to Y(k).

Remark. Equivalently, qn is the k/n = ⌈(1−α)(n+1)⌉/n quantile of the empirical cdf based on {Y1, . . . , Yn}.
In this way, we view qn as the sample quantile at an adjusted level: we use ⌈(1 − α)(n + 1)⌉/n, instead of
1 − α, which is a sort of finite-sample correction.

Remark. The proof essentially relies on the fact the rank of Yn+1 among {Y1, Y2, . . . , Yn+1} is uniformly
distributed over {1, 2, . . . , n + 1}. This follows from the assumption that Y1, . . . , Yn+1 are i.i.d. However,
the i.i.d assumption is not necessary and can be replaced by exchangeability, i.e., (Y1, . . . , Yn+1) and
(Yπ(1), . . . , Yπ(n+1)) have the same joint distribution for any permutation π(·).

2.3 Coverage upper bound
We can also derive a coverage upper bound when there are almost surely no ties among Y1, . . . , Yn+1 (e.g.,
they are generated from continuous distributions). Let Rn+1 be the rank of Yn+1 among {Y1, Y2, . . . , Yn+1}.
Then Rn+1 is uniformly distributed over {1, 2, . . . , n + 1}. Thus we have

P(Yn+1 ≤ qn) = P(A) = P(Rn+1 ≤ k) = k

n + 1 = ⌈(1 − α)(n + 1)⌉
n + 1 <

(1 − α)(n + 1) + 1
n + 1 = 1 − α + 1

n + 1 ,

where we have used the fact that ⌈k⌉ < k + 1. Therefore,

1 − α ≤ P(Yn+1 ≤ qn) < 1 − α + 1
n + 1 .

2.4 Regression problems
We now apply the above idea to the regression problem where we observe a set of covariates Xi ∈ X and
a response Yi ∈ Y = R for i = 1, 2, . . . , n. We aim to construct a prediction set for Yn+1 based on Xn+1.
Suppose f̂ is a point predictor trained based on (Xi, Yi) such that f̂(x) predicts the value of y that we expect
to see at x.

We define

Ri = |f̂(Xi) − Yi|, i = 1, 2, . . . , n,
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as the absolute residuals. Following the above idea, we let qn be the ⌈(1 − α)(n + 1)⌉ smallest value of
R1, . . . , Rn. We could then define the prediction set

Cn(x) = [f̂(x) − qn, f̂(x) + qn].

We hope to show that Yn+1 ∈ Cn(Xn+1) with probability at least 1 − α. We note that Yn+1 ∈ Cn(Xn+1) is
equivalent to Rn+1 ≤ qn. Using the same argument as in Exercise 11.1, Rn+1 ≤ qn is equivalent to that Rn+1
is among the ⌈(1 − α)(n + 1)⌉ smallest of R1, . . . , Rn+1. However, we do not have the exchangeability in this
case as f̂ depends on (X1, Y1), . . . , (Xn, Yn) which will make {R1, . . . , Rn} smaller than Rn+1 in general. To
address this issue, we will consider a sample-splitting strategy.

3 Sample-splitting conformal prediction
Another key idea in conformal prediction is to build residuals in a way that treats all of the data, including
the test data, in a symmetric fashion. This will ensure that the residuals obey the exchangeability condition
we require to get coverage. Sample-splitting is a computationally efficient approach to achieve this goal.

Concretely, we do the following in sample-splitting conformal prediction (split CP). We first divide the
training set into two sets:

• D1, the proper training set;

• D2, the calibration set.

We can think of Di as the set of indices so that D1 ∪ D2 = {1, 2, . . . , n} and D1 ∩ D2 = ∅. Suppose the size
of Di is ni for n1 + n2 = n.

We train a predictor f̂n1 based on the proper training set {(Xi, Yi) : i ∈ D1}. Then, we define the absolute
residuals based on the calibration set

Ri = |f̂n1(Xi) − Yi|, i ∈ D2.

Now let qn2 be the ⌈(1 − α)(n2 + 1)⌉ smallest value of Ri, i ∈ D2 and define

Cn(x) = [f̂n1(x) − qn2 , f̂n1(x) + qn2 ].

As f̂n1(·) only depends on the proper training set, {Ri : i ∈ D2} and Rn+1 are exchangeable. Using similar
arguments as in the previous section, we can show that

P(Yn+1 ∈ Cn(Xn+1))
=P (Rn+1 ≤ qn2)
=P (Rn+1 is among the ⌈(1 − α)(n2 + 1)⌉ smallest of {Ri, i ∈ D2} ∪ {Rn+1})

≥⌈(1 − α)(n2 + 1)⌉
n2 + 1 ≥ 1 − α.

Furthermore, if there are no ties among the absolute residuals almost surely, we can show that

P(Yn+1 ∈ Cn(Xn+1)) < 1 − α + 1
n2 + 1 .

3.1 General score functions
Above, we utilized absolute residuals as a negatively oriented score function, where lower values are preferable.
However, any negatively oriented score function will suffice, and the argument holds just as before. More
precisely, we consider

S(x, y) = S(x, y, f̂n1),
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which assigns a conformity score to the point (x, y) based on f̂n1 . Define the calibration set scores

Ri = S(Xi, Yi), i ∈ D2,

and a conformal set

Cn(x) = {y ∈ Y : S(x, y) ≤ ⌈(1 − α)(n2 + 1)⌉ smallest of Ri, i ∈ D2}

Then, we can get the same guarantee as before.

3.2 Randomization to get exact coverage
We can always use auxiliary randomization to get the exact coverage 1 − α in our prediction sets. To illustrate
the construction, we begin with the following facts.

Exercise 11.2: Let W be a random variable with the cdf F . Define the inverse cdf F −1(x) = inf{u : F (u) ≥
x}. First show that

P(F (W ) ≤ t) ≤ t.

If u is a discontinuous point of F such that F (u) − F (u−) > 0, then for F (u−) < t < F (u), we have
P(F (W ) ≤ t) < t. Let U be a uniform random variable over [0, 1]. Define

F ∗(u) = F (u−) + U(F (u) − F (u−)).

Note that if u is a continuous point of F , F ∗(u) = F (u). Show that

P(F ∗(W ) ≤ t) = t.

Let Rn+1 = S(Xn+1, Yn+1) and Fn2+1 be the empirical cdf based on {Ri : i ∈ D2} ∪ {Rn+1}. Applying the
result from Exercise 11.2 to Fn2+1, we can construct F ∗

n2+1. Now define the conformal set

C∗
n(x) =

{
y ∈ Y : 1

n2 + 1
∑

i∈D2

1 {S(Xi, Yi) < S(x, y)} + U

n2 + 1

(∑
i∈D2

1{Ri = S(x, y)} + 1
)

≤ 1 − α

}
,

where U ∼ Unif(0, 1) is independent of the data. We have Yn+1 ∈ C∗
n(Xn+1) if and only if F ∗

n2+1(Rn+1) ≤
1 − α. Therefore, we get

P(Yn+1 ∈ C∗
n(Xn+1)|(Xi, Yi) : i ∈ D1) = P(F ∗

n2+1(Rn+1) ≤ 1 − α|(Xi, Yi) : i ∈ D1) = 1 − α. (2)

Exercise 11.3: Suppose there are no ties almost surely among {R1, . . . , Rn+1}. Prove (2).

4 Conformal p-value and PRDS property
Consider a score function S and suppose (Z1, . . . , Zn+1) are drawn independently from a distribution P . We
define a conformal p-value as

p(z) = 1 + |1 ≤ i ≤ n : S(Zi) ≤ S(z)|
n + 1 ,

where |A| denotes the cardinality of a set A. The function S here measures how much a new observation
conforms to previous data. A high score means high conformity and a low score means low conformity
(different from the definition above). The goal of defining the conformal p-value is that we now use it to test
if new data points are from the same distribution as Z1, . . . , Zn ∼ P . If a new data point Zn+1 conforms
much more poorly than Z1, . . . , Zn to previous data, that counts as evidence against it being from P . Thus,
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conformal p-values can be used to test for equality of distributions without any knowledge of the actual
underlying distributions.

Exercise 11.4: Assume that S(Z) is continuously distributed for Z ∼ P . Then p(Zn+1) is uniformly
distributed over the set {1/(n + 1), 2/(n + 1), . . . , 1}.

Given a test set {Zn+1, . . . , Zn+m} that is independent of (Z1, . . . , Zn), we define the conformal p-values

pi = p(Zn+i), i = 1, 2, . . . , m.

Here the p-value pi can be used to test H0,i : Zn+i ∼ P , e.g., testing for outliers.

Example. Let S(x, y) = −|y − µ̂(x)| as our conformity score, where µ̂ is obtained through a separate data
set. Let Zn+1 = (X, Y ). Recall that in this case

p(z) = 1 + |{1 ≤ i ≤ n : |Y − µ̂(X)| ≤ |Yi − µ̂(Xi)|}|
n + 1 .

We have

Y /∈ Cn(X) ⇐⇒ |Y − µ̂(X)| > ⌈(1 − α)(n + 1)⌉ smallest of |Yi − µ̂(Xi)| for 1 ≤ i ≤ n,

⇐⇒ p(Zn+1) ≤ 1 + n − ⌈(1 − α)(n + 1)⌉
n + 1

=⇒ p(Zn+1) ≤ α.

Theorem. If the distribution of S(Z) is continuous for Z ∼ P , then the conformal p-values are PRDS on
the set of true nulls.

Proof. Without loss of generality, assume that H1, . . . , Hn0 are true nulls and let Sj = S(Zj) for 1 ≤ j ≤ n+m.
For any increasing set D, we aim to show that

P ((p1, . . . , pm) ∈ D|p1 = x)

is an increasing function of x.

We note that (p2, . . . , pm) is a deterministic function of p1 and W1 := (S(1), . . . , S(n+1), Sn+2 . . . , Sn+m),
where S(1) ≤ S(2) ≤ · · · S(n+1) is the order statistics of S1, . . . , Sn+1. Given p1, we can figure out the rank
of Sn+1 among S1, . . . , Sn+1 and hence we know the order statistics of S1, . . . , Sn. The p-values p2, . . . , pm

can be computed based on Sn+2, . . . , Sn+m and the order statistics of S1, . . . , Sn. Because of this, we write
(p1, p2, . . . , pm) = G(p1, W1). We now show that the function G(p1, W1) is increasing in p1. We prove that
increasing p1 and keeping W1 fixed does not decrease any p-values. Note that

p1 = k

n + 1 =⇒ {S1, . . . , Sn} = {S(1), . . . , S(k−1), S(k+1), . . . , S(n+1)}

=⇒ pj = 1
n + 1

1 +
∑

i ̸=k,i≤n+1
1{Sn+j ≥ S(i)}


⇐⇒ pj = 1

n + 1

1 − 1{Sn+j ≥ S(k)} +
∑

1≤i≤n+1
1{Sn+j ≥ S(i)}

 .

The term 1 − 1{Sn+j ≥ S(k)} +
∑

1≤i≤n+1 1{Sn+j ≥ S(i)} is increasing in k. Thus, G(p1, W1) is increasing
in p1.

Finally, we note that p1 is independent of W1 under the null. The null here means that Zn+1 ∼ P . In
that case, we know that p1 is uniform over {1/(n + 1), . . . , 1}. Also, given S(1), ..., S(n+1), the value of Sn+1
is uniform over this set since the random variables are i.i.d under the null and hence, p1 has the same
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distribution even after conditioning which shows that p1 ⊥ (S(1), ..., S(n+1)). Since Zn+1 ⊥ Zn+2, ..., Zn+m

by assumption, we have that p1 ⊥ W1. This enables the following calculation. For any increasing set D,

P ((p1, p2, . . . , pm) ∈ D | p1 = x) = P (G(p1, W1) ∈ D | p1 = x)
= EW1 [P (G(p1, W1) ∈ D | p1 = x, W1)]
= EW1 [1(G(x, W1) ∈ D)] (p1 ⊥ W1)

Since G(p1, W1) is increasing in p1 and D is an increasing set, 1(G(x, W1) ∈ D) is increasing in x which
implies the PRDS property.

5 Conformalized quantile regression
The materials in this section are from Romano et al. (2019). One limitation of the sample-splitting conformal
prediction is that the length of the prediction interval is equal to 2qn2 , which is independent of Xn+1. In
other words, the interval does not reflect the heterogeneity of the observations. In this section, we will learn
a new method fully adaptive to heteroscedasticity. It combines conformal prediction with classical quantile
regression, inheriting the advantages of both.

5.1 Quantile regression
The conditional distribution of Y given X = x is

F (y|X = x) = P (Y ≤ y|X = x)

and the αth conditional quantile function is

qα(x) = inf{y ∈ R : F (y|X = x) ≥ α}.

We can obtain a conditional prediction interval for Y given X = x with mis-coverage rate α as

C(x) = [qα/2(x), q1−α/2(x)].

By construction, this interval satisfies that

P (Y ∈ C(X)|X = x) ≥ 1 − α.

Notice that the length of the interval C(X) can vary greatly depending on the value of X. The uncertainty
in the prediction of Y is naturally reflected in the length of the interval. In practice, we cannot know this
ideal prediction interval, but we can try to estimate it from the data.

Classical regression estimates the conditional mean of Y given X = x by µ(x; θ̂) with

θ̂ = argminθ

1
n

n∑
i=1

(Yi − µ(Xi, θ))2 + R(θ).

Here θ are the parameters associated with the regression model, µ(x; θ) is the regression function (for modeling
the conditional mean), and R(θ) is a penalty/regularizer.

Quantile regression estimates a conditional quantile function qα(x) of Y given X = x by q̂α(x) = f(x; θ̂), with

θ̂ = argminθ

1
n

n∑
i=1

ρα(Yi, f(Xi; θ)) + R(θ).

Here f(x; θ) is the quantile function and ρα is the so-called check function or pinball loss defined by

ρα(y, b) =
{

α(y − b) if y > b,

(1 − α)(b − y) if y ≤ b.
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The simplicity and generality of this formulation make quantile regression widely applicable. As in classical
regression, one can leverage the great variety of machine learning methods to design and learn qα(x). An
obvious strategy to construct a prediction band with the nominal mis-coverage rate α: estimate qα(x) by
q̂α(x) using quantile regression and construct the interval:

Ĉ(x) = [q̂α/2(x), q̂1−α/2(x)].

However, it is not guaranteed to satisfy

P (Y ∈ Ĉ(X)|X = x) ≥ 1 − α

when C(X) is replaced by the estimated interval Ĉ(X). To address this issue, we shall use the idea of
conformal prediction.

5.2 Conformalized quantile regression
Similar to split conformal prediction, we split the data into a proper training set indexed by D1 and a
calibration set indexed by D2.

1. Given any quantile regression algorithm A, we fit two quantile regression functions q̂α/2(x) and q̂1−α/2(x)
on the proper training set.

2. We compute conformity scores that quantify the error made by the plug-in prediction interval Ĉ(x) =
[q̂α/2(x), q̂1−α/2(x)]. The scores are evaluated on the calibration set as

Ei = max{q̂α/2(Xi) − Yi, Yi − q̂1−α/2(Xi)}

for each i ∈ D2. If Yi < q̂α/2(Xi), Ei = |Yi − q̂α/2(Xi)|. Similarly, if Yi > q̂1−α/2(Xi), Ei =
|Yi − q̂1−α/2(Xi)|. If q̂α/2(Xi) < Yi < q̂1−α/2(Xi), Ei is non-positive. The conformity score thus
accounts for both undercoverage and overcoverage.

3. Given a new data point Xn+1, we construct a prediction interval

C̃(Xn+1) = [q̂α/2(Xi) − Q1−α(E, D2), q̂1−α/2(Xi) + Q1−α(E, D2)].

where Q1−α(E, D2) is the ⌈(1 − α)(n2 + 1)⌉/n2th empirical quantile of {Ei : i ∈ D2} with n2 = |D2|.

Theorem. Suppose (Xi, Yi)n+1
i=1 are exchangeable, then the prediction interval C̃(Xn+1) satisfies that

P (Yn+1 ∈ C̃(Xn+1)) ≥ 1 − α.

When Eis have no ties almost surely, we have

P (Yn+1 ∈ C̃(Xn+1)) ≤ 1 − α + 1
|D2| + 1 .

Proof. By the construction of C̃, we have Yn+1 ∈ C̃(Xn+1) if and only if

En+1 ≤ Q1−α(E, D2).

As Ei, i ∈ D2 and En+1 are exchangeable, using the same argument as before, we have

P (Yn+1 ∈ C̃(Xn+1)|(Xi, Yi), i ∈ D1) ≥ 1 − α.

and when there is no tie,

P (Yn+1 ∈ C̃(Xn+1)|(Xi, Yi), i ∈ D1) ≤ 1 − α + 1
|D2| + 1 .
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Figure 1: Left panel: standard split conformal prediction; Right panel: conformal quantile regression.

6 The jackknife and jackknife+
Sample-splitting conformal prediction is computationally very cheap and has the desired coverage under
exchangeability (no other assumption on the predictive algorithm is needed). However, these benefits come
at a statistical cost. If n1 is small, the fitted model f̂n1 can be very poor, leading to a wide interval. If n2 is
small, the interval can again be wide. The jackknife and jackknife+ are alternative approaches that can use
the data more efficiently but are computationally expensive.

To describe the jackknife prediction interval, we let f̂−i be a predictor based on the observations
(X1, Y1), . . . , (Xi−1, Yi−1), (Xi+1, Yi+1), . . . , (Xn, Yn). Denote by

RLOO
i = |Yi − f̂−i(Xi)|

the ith leave-one-out residual. Further, let
qn = the ⌈(1 − α)(n + 1)⌉th smallest value of RLOO

1 , . . . , RLOO
n ,

the 1 − α quantile of the empirical distribution of these values. Then, the jackknife prediction interval is
given by

[f̂(Xn+1) − qn, f̂(Xn+1) + qn],

where f̂ is the predictor based on (X1, Y1), . . . , (Xn, Yn). However, the jackknife procedure does not have
any universal theoretical guarantees. In particular, it may lose predictive coverage when f̂ is unstable. For
example, the jackknife can have extremely poor coverage using least squares regression when the sample size
n is close to the dimension p; Figure 2.

To overcome this issue, Barber et al. (2020, arXiv:1905.02928) introduce the jackknife+, which comes with
universal theoretical guarantees. Let

qn,low = the ⌊α(n + 1)⌋th smallest value of f̂−1(Xn+1) − RLOO
1 , . . . , f̂−n(Xn+1) − RLOO

n ,

and
qn,up = the ⌈(1 − α)(n + 1)⌉th smallest value of f̂−1(Xn+1) + RLOO

1 , . . . , f̂−n(Xn+1) + RLOO
n .

The jackknife+ prediction interval is given by
[qn,low, qn,up].

While both versions of jackknife use the leave-one-out residuals, the difference is that for jackknife, we center
our interval on the predicted value f̂(Xn+1) fitted on the full training data, while for jackknife+, we use the
leave-one-out predictions f̂−i(Xn+1) for the test point.

Theorem. The jackknife+ prediction interval satisfies
P (Yn+1 ∈ [qn,low, qn,up]) ≥ 1 − 2α.

See Barber et al. (2020) for a proof of this result.
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Figure 2: Average coverage and prediction interval width for different methods. The plots are from Barber et
al. (2020).

Figure 3: Illustration of the usual jackknife and the new jackknife+. The resulting prediction intervals are
chosen so that, on either side, the boundary is exceeded by a sufficiently small proportion of the two-sided
arrows—above, these are marked with a star.

9


	Conformal prediction
	Distribution-free predictive inference
	Basic idea
	Exchangeability
	Coverage upper bound
	Regression problems

	Sample-splitting conformal prediction
	General score functions
	Randomization to get exact coverage

	Conformal p-value and PRDS property
	Conformalized quantile regression
	Quantile regression
	Conformalized quantile regression

	The jackknife and jackknife+

