
STAT 689: Large-scale and high-dimensional statistical inference Fall 2024

Lecture 12

1 Lasso
In statistics and machine learning, Lasso (least absolute shrinkage and selection operator) is a regression
analysis method that performs both variable selection and regularization to enhance the prediction accuracy
and interpretability of the resulting statistical model. Here, we describe Lasso in linear regression. Consider
i.i.d. samples (xi, yi), i = 1, 2, . . . , n from the linear model

yi = x⊤
i β0 + ϵi,

where β0 ∈ Rp is an unknown coefficient vector, and {ϵi}n
i=1 are random errors with mean zero. We can more

succinctly express this data model as
Y = Xβ0 + ϵ,

where Y = (y1, . . . , yn)⊤ ∈ Rn is the vector of responses, X is the matrix of predictor variables, with ith row
x⊤

i , and ϵ = (ϵ1, . . . , ϵn)⊤ is the vector of errors.

1.1 Regularization
Regularization is the process of adding information in order to solve an ill-posed problem or to prevent
overfitting. When p ≫ n, least squares estimation is ill-posed and regularization is needed. Let’s consider
three canonical choices: the l0, l1, and l2 norms:

∥β∥0 =
p∑

j=1
1{βj ̸= 0},

∥β∥1 =
p∑

j=1
|βj |,

∥β∥2
2 =

p∑
j=1

β2
j .

In constrained form, these norms give rise to the following problems:

Best subset selection: min
β∈Rp

∥Y − Xβ∥2 subject to ∥β∥0 =
p∑

j=1
1{βj ̸= 0} ≤ t,

Lasso: min
β∈Rp

∥Y − Xβ∥2 subject to ∥β∥1 =
p∑

j=1
|βj | ≤ t,

Ridge regression: min
β∈Rp

∥Y − Xβ∥2 subject to ∥β∥2
2 =

p∑
j=1

β2
j ≤ t.

In penalized form, Lasso is defined as

min
β∈Rp

1
n

∥Y − Xβ∥2 + λ∥β∥1.

The best subset selection provides a sparse solution, but the corresponding optimization problem is nonconvex
and difficult to solve. Ridge regression, while convex, does not perform variable selection effectively as the
solution is non-sparse. On the other hand, Lasso addresses this by providing a sparse solution through the
solution of a convex optimization problem.
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1.2 Consistency of Lasso
We provide some consistent results about Lasso without giving proof. For more details, please refer to STAT
620 lecture notes.

Denote by s0 the number of nonzero components in the true regression coefficient β0.

Compatibility condition: Let Σ̂ = X⊤X/n ∈ Rp×p. If for some ϕ0 > 0, and for all β satisfying
∥βSc

0
∥1 ≤ 3∥βS0∥1, it holds that

∥βS0∥2
1 ≤ s0(β⊤Σ̂β)/ϕ2

0.

Main result: Under the compatibility condition, we have

∥X(β̂ − β0)∥2/n + λ∥β̂ − β0∥1 ≤ 4λ2s0/ϕ2
0.

As a result, we have

∥X(β̂ − β0)∥2/n ≤ 4λ2s0/ϕ2
0,

∥β̂ − β0∥1 ≤ 4λs0/ϕ2
0.

A common choice of λ is

λ = C0

√
log(p)

n

for some constant C0, which leads to

∥β̂ − β0∥1 ≤ Cs0

√
log(p)

n
, C = 4C0

ϕ2
0

.

1.3 Asymptotic distribution of Lasso estimator
In the low-dimensional setup (i.e., n ≫ p), the Lasso estimator has a nonstandard limiting distribution; see
Fu and Knight (2000, AOS). Suppose

√
nλ → λ0 and Σ̂ →p Σ0. Fu and Knight showed that

√
n(β̂ − β0) d→ argminu∈RpV (u),

where

V (u) = −2u⊤W + u⊤Σ0u + λ0

p∑
j=1

[ujsign(βj)1{βj ̸= 0} + |uj |1{βj = 0}]

with W ∼ N(0, σ2Σ0).

2 Debiased Lasso
In the high-dimensional setup (i.e., n ≈ p or n ≪ p), the (asymptotic) distribution of the Lasso estimator β̂ is
not tractable due to its bias. One way to address this issue is through dibiasing, which aims to remove/reduce
the bias in the Lasso estimator so that the resulting estimator has a tractable asymptotic distribution.

Suppose the design matrix X has i.i.d rows with mean zero and covariance matrix Σ. The construction of the
debiased Lasso estimator involves a suitable approximation (say Θ̂) for the inverse of Σ (Σ−1 is also called
the precision matrix). We will briefly discuss the construction of Θ̂ below. The debiased Lasso estimator is
defined as

β̃ = β̂ + Θ̂X⊤(Y − Xβ̂)/n.
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An expansion for β̃: Recall that Y = Xβ0 + ϵ. The debiased Lasso estimator can be decomposed as
√

n(β̃ − β0) =
√

n(β̂ − β0) + Θ̂X⊤(Y − Xβ̂)/
√

n

=Θ̂X⊤ϵ/
√

n +
√

n(β̂ − β0) + Θ̂X⊤(Xβ0 − Xβ̂)/
√

n

=Θ̂X⊤ϵ/
√

n +
√

n(β̂ − β0) +
√

nΘ̂Σ̂(β0 − β̂)

=Θ̂X⊤ϵ/
√

n +
√

n(I − Θ̂Σ̂)(β̂ − β0),

where Θ̂X⊤ϵ/
√

n is the leading term and ∆ :=
√

n(I − Θ̂Σ̂)(β̂ − β0) is a remainder term that is of smaller
order.

Leading term. If the errors are normally distributed, i.e., ϵ ∼ N(0, σ2I), then conditional on X, we have

Θ̂X⊤ϵ/
√

n ∼ N(0, σ2Θ̂Σ̂Θ̂⊤).

Note that Θ̂ only depends on X. When ϵ’s are not normally distributed, one can still establish the asymptotic
normally using the CLT under suitable assumptions.

Remainder term. Let ∥ · ∥p be the lp norm of a vector. We note that

∥∆∥∞ =
√

n∥(Θ̂Σ̂ − I)(β̂ − β0)∥∞

≤
√

n∥Θ̂Σ̂ − I∥∞∥β̂ − β0∥1,

where ∥A∥∞ = maxi,j |aij |. For a carefully constructed estimator Θ̂, one can show that

∥Θ̂Σ̂ − I∥∞ ≤ C ′

√
log(p)

n

for some constant C ′. For example, the above rate is satisfied for the precision matrix estimators as described
below. In this case, we have

∥∆∥∞ ≤
√

n∥Θ̂Σ̂ − I∥∞∥β̂ − β0∥1

=Op

(
s0 log(p)√

n

)
= op(1)

if s0 log(p) ≪
√

n. Note that this is a stronger requirement than achieving the consistency for the Lasso
estimator, which requires s2

0 log(p) ≪ n.

Combing the results, we have
√

n(β̃j − β0,j) d
≈ N(0, σ2(Θ̂Σ̂Θ̂⊤)j,j).

Therefore, a 1 − α confidence interval for β0,j can be constructed as[
β̃j − z1−α/2σ̂

√
(Θ̂Σ̂Θ̂⊤)j,j/n, β̃j + z1−α/2

√
(Θ̂Σ̂Θ̂⊤)j,j/n

]
where z1−α/2 is the 1 − α/2 quantile of the standard normal distribution and σ̂2 is some estimate of the noise
level σ2. The so-called scaled Lasso is one way to estimate σ2; see Sun and Zhang (2012, Biometrika).

3 Precision matrix estimation
3.1 Gaussian graphical models
Suppose Z = (Z1, . . . , Zp)⊤ ∼ N(0, Σ) and Θ = Σ−1 is the precision matrix. The conditional distribution of
Zj given Z−j is equal to N(µj(Z−j), τ2

j )

µj(Z−j) = Σj,−jΣ−j,−jZ−j ,

τ2
j = Σjj − Σj,−jΣ−1

−j,−jΣ−j,j .
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Therefore, we can write

Zj = Z⊤
−jβ∗

j + ϵj

where β∗
j = Σ−1

−j,−jΣ−j,j and ϵj ∼ N(0, τ2
j ).

On the other hand, by the inverse formula for block matrices, we have

θjj =(Σjj − Σj,−jΣ−j,−jΣ−j,j)−1

=(Σjj − 2Σj,−jβ∗
j + β∗⊤

j Σ−1
−j,−jβ∗

j )−1

and

θ−j,j = −θjjβ∗
j .

It thus implies that

θjj = 1
τ2

j

, θ−j,j = −
β∗

j

τ2
j

.

These results inspire the nodewise Lasso method introduced below.

3.2 Nodewise Lasso
Nodewise Lasso was originally proposed by Meinshausen and Bühlmann (2006, AOS) as a way to estimate
the precision matrix when n ≪ p.

Let X−j be the design matrix without the jth column Xj . For j = 1, 2, . . . , p, consider

γ̂j = {γ̂j,k : 1 ≤ k ≤ p : k ̸= j} = argminγ∈Rp−1
(
∥Xj − X−jγ∥2

2/n + 2λj∥γ∥1
)

.

Let Ĉ = (ĉi,j)p
i,j=1 with ĉi,i = 1 and ĉi,j = −γ̂i,j for i ̸= j. Further, let

τ̂2
j = ∥Xj − X−j γ̂j∥2

2/n + 2λj∥γ̂j∥1.

Write T̂ 2 = diag(τ̂2
1 , . . . , τ̂2

p ). Finally, the nodewise Lasso estimator for Θ is constructed as

Θ̂ = T̂ −2Ĉ.

It can be shown that

∥Θ̂Σ̂ − I∥∞ = Op

(√
log(p)

n

)
.

3.3 Optimal projection
In this section, we provide an interpretation of debiased Lasso based on optimal projection. Suppose we want
to test the significance of the jth covariate, i.e., to test if β0,j = 0 where β0,j is the jth component of the
true regression coefficient β0. We can rewrite the model Y = Xβ0 + ϵ as

ηj := Y − X−jβ0,−j = Xjβ0,j + ϵ.

If the value of ηj is known, the problem will reduce to the inference about β0,j in a simple linear regression
model. As ηj is not directly observable, the natural idea is to replace ηj with a suitable estimator defined as

η̂j := Y − X−j β̂−j = Xjβ0,j + ϵ + X−j(β0,−j − β̂−j),
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Figure 1: Lasso-Pro: Debiased Lasso; Res-Boot: Residual bootstrap. The nominal level is 95%.

where β̂ is the Lasso estimator for β0. Here, the extra term X−j(β0,−j − β̂−j) quantifies the estimation effect.

Now given a projection vector v = (v1, . . . , vn)⊤ ∈ Rn such that v⊤Xj = n, we define the projection-based
estimator for β0,j as

β̃j = v⊤η̂j

n
= β0,j + v⊤ϵ

n
+ v⊤X−j(β0,−j − β̂−j)

n
,

which implies that

√
n(β̃j − β0,j) = v⊤ϵ√

n
+ v⊤X−j(β0,−j − β̂−j)√

n
.

Suppose ϵ ∼ N(0, σ2Ip) and v is determined by the design matrix X. Then, conditional on the design

v⊤ϵ√
n

∼ N(0, σ2∥v∥2/n).

On the other hand,
1√
n

|v⊤X−j(β0,−j − β̂−j)| ≤
√

n∥β0,−j − β̂−j∥1∥v⊤X−j/n∥∞.

Recall that for the Lasso estimator,
√

n∥β0,−j − β̂−j∥1 = Op(s0
√

log(p)).

Suppose

(i) ∥v∥2/n = Op(1);

(ii) s0
√

log(p)∥v⊤X−j/n∥∞ = op(1).

Then, we have
√

n(β̃j − β0,j) ≈d N(0, σ2∥v∥2/n).

Essentially, we want to find a direction v which is “almost orthogonal” to Xk for all k ≠ j while satisfying
that v⊤Xj = n. One way to achieve this goal is by finding v, which minimizes

max
k ̸=j

|v⊤Xk| + λ∥v∥2

subject to the constraint that v⊤Xj = n. See Yi and Zhang (2022) for a development based on this idea.
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3.4 Javanmard and Montanari’s approach
This approach (JM, hereafter) was proposed by Javanmard and Montanari (2014, JMLR). As seen before,
the validity of the debiased Lasso estimator requires the control of the remainder term ∆, while its efficiency
relies on the magnitude of (Θ̂Σ̂Θ̂⊤)j,j . The JM method utilizes this insight and constructs Θ̂ row by row.
Specifically, the ith row of Θ̂ is the solution of the convex optimization problem:

min
θ

θ⊤Σ̂θ subject ∥Σ̂θ − ej∥∞ ≤ η,

where ej is the vector with one at the jth position and zero everywhere else. Denote by θ̂j the solution to the
above problem. Then Θ̂ = [θ̂1, . . . , θ̂p]⊤. When

η = C ′

√
log(p)

n
,

a feasible solution automatically satisfies that

∥Θ̂Σ̂ − I∥∞ ≤ C ′

√
log(p)

n
.

On the other hand, the minimization encourages the resulting debiased Lasso estimator to have a small
asymptotic variance and thus a narrower confidence interval for β0,j .
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