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1 Background
We are living in an era of unprecedented data abundance, with vast troves of information available across
a multitude of subjects. This data-rich landscape has ushered in a new paradigm in statistics, where data
analysts now opt to select their models after carefully examining the available data, rather than making
those choices upfront (for instance, using tools like the Akaike Information Criterion to choose variables in
linear regression). As a result, traditional statistical inference methods may no longer be able to reliably
provide their usual guarantees. Selective inference is an active area of research that aims to develop new
inferential techniques aligned with this updated data-driven approach to modeling. In this lecture, we will
delve deeper into the concepts and challenges of selective inference, extending our exploration beyond just
hypothesis testing. The specific results presented here may not stand the test of time, but the underlying
questions being grappled with are of great significance. Readers should focus on understanding these key
questions and consider how researchers are working to address them.

2 POSI Setting
For a given variable selection procedure M̂(y), there are a few possible conditions we may want our confidence
intervals to satisfy:

• P (β
j•M̂

∈ C
j•M̂

|j ∈ M̂) ≥ 1 − α (inference conditional on being selected)

• P (∀j ∈ M̂, β
j•M̂

∈ C
j•M̂

) ≥ 1 − α (simultaneous inference over selected variables)

In this setting, the object of inference is random. Further, we do not know P (j ∈ M̂) because we don’t
know how the data analyst made their choice. Different selection procedures will lead to different confidence
intervals, and it’s not obvious how we should construct these confidence intervals.

POSI (POst Selection Inference) addresses this problem by constructing confidence intervals that provide
simultaneous coverage no matter what the selection procedure is. In other words, they satisfy:

∀M̂ P (∀j ∈ M̂, β
j•M̂

∈ C
j•M̂

) ≥ 1 − α

The pros and cons regarding this approach are:

• Pros: This simultaneous inference is the strongest form of protection possible. No matter what the
data scientist did, the inference is valid. If we can’t formalize what the data scientist did, this may
be the only valid approach. “The most valuable statistical analyses often arise only after an iterative
process involving the data.” - Gelman and Loken (2013)

• Cons: Confidence intervals can be very wide.

• Merit: This work got lots of people thinking.

In principle, POSI is doable using the following observation. For any variable selection procedure M̂ ,

max
j∈M̂

|z
j•M̂

| ≤ max
M

max
j∈M

|zj•M |,

where

z
j•M̂

=
β̂

j•M̂
− β

j•M̂

ŝd(β̂
j•M̂

)
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is the z-score for testing the significance of the jth covariate in the model M̂ .

Theorem.
P (max

M
max
j∈M

|zj•M | ≤ K1−α/2) ≥ 1 − α,

where K1−α/2 is the POSI constant. Then with C
j•M̂

= β̂
j•M̂

± K1−α/2ŝd(β̂
j•M̂

),

∀M̂ P (∀j ∈ M̂, β
j•M̂

∈ C
j•M̂

) ≥ 1 − α.

The key to using this universal guarantee theorem is to compute the POSI constant, which is a quantile of
the random variable maxM maxj∈M |zj•M |. The difficulty in calculating this quantile is that we have to look
at 2p models. As an alternative, we can try to find asymptotic bounds on this number. It turns out that the
POSI constant satisfies: √

2 log p ≲ K1−α(X) ≲ √
p.

• The lower bound is achieved for orthogonal designs.

• If we consider a selection process satisfying M̂ = argmaxM maxj∈M |zj•M | (“Single Predictor Adjusted
Regression” — SPAR design), the upper bound is achieved as it is the “significance hunting” procedure
that selects the model containing the most significant “effect”. See Section 6.2 of Berk et al. (2013) for
an example.

• The POSI constant can get very large (but not necessarily so).

Here are some conclusions with respect to POSI:

• It provides protection against all kinds of selection.

• It can be very conservative (especially if we don’t engage in p-hacking...).

• It is perhaps difficult to implement. It isn’t computationally tractable to compute the POSI constant
for large p.

• Split sampling is a possible alternative, but it’s not always possible because it requires exchangeability,
which we don’t have, for example, in a designed experiment. (As an aside, note that cross-validation,
although used in many settings, only works when there is exchangeability...)

A significant impact of POSI is that it asked important questions and stimulated lots of think-
ing/questioning/research. For more details, please check Berk et al. (2013).

3 Selective inference for clustering
The materials in this section are from Gao et al. (2022, JASA). Suppose we have a set of n observations
X1, . . . , Xn ∈ Rq, where

Xi ∼ N(µi, σ2Iq), i = 1, 2, . . . , n,

where µi ∈ Rq is the mean vector for the ith observation and σ2 is assumed to be known. For any
G ⊆ {1, 2, . . . , n}, we define

µ̄G = 1
|G|

∑
i∈G

µi, X̄G = 1
|G|

∑
i∈G

Xi.

Given a realization x = [x1, . . . , xn]⊤ of X = [X1, . . . , Xn]⊤ ∈ Rn×q, we first apply a clustering algorithm C
to obtain C(x) which is a partition of {1, 2, . . . , n}. We then use x to test, for a pair of clusters Ĉ1, Ĉ2 ∈ C(x),

H0,Ĉ1,Ĉ2
: µ̄Ĉ1

= µ̄Ĉ2
versus Ha,Ĉ1,Ĉ2

: µ̄Ĉ1
̸= µ̄Ĉ2

.
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Figure 1: (a) a simulated data set with µi = 0 ∈ R2 for all i and σ2 = 1; QQ-plots of the Unif(0, 1) distribution
against the p-values from (b) the Wald test and (c) the test based on selective inference.

As σ2 is known, it is tempting to simply apply a Wald test, with a p-value given by

PH0,Ĉ1,Ĉ2

(
∥X̄Ĉ1

− X̄Ĉ2
∥2 ≥ ∥x̄Ĉ1

− x̄Ĉ2
∥2
)

where

∥X̄Ĉ1
− X̄Ĉ2

∥2 ∼ σ

√
1

|Ĉ1|
+ 1

|Ĉ2|
χq.

However, since we clustered x to get C(x) = {Ĉk : k = 1, 2, . . . , K}, we shall observe substantial differences
between {x̄Ĉk

}K
k=1 even when there is no signal in the data. In other words, the scaled chi distribution does

not provide the correct characterization of the behavior of ∥x̄Ĉ1
− x̄Ĉ2

∥2
2; see Figure 1. To overcome this issue,

a natural idea is to define the p-value as

PH0,Ĉ1,Ĉ2

(
∥X̄Ĉ1

− X̄Ĉ2
∥2 ≥ ∥x̄Ĉ1

− x̄Ĉ2
∥2

∣∣∣Ĉ1, Ĉ2 ∈ C(X)
)

,

which accounts for the fact that Ĉ1, Ĉ2 are chosen based on the data. However, it is difficult to characterize
this p-value as it depends on some unknown nuisance quantities.

To construct a valid p-value, the core idea would be to condition X on additional events so that the conditional
probability is tractable. To illustrate the idea, let us consider two groups C1, C2 ⊆ {1, 2, . . . , n} such that
C1 ∩ C2 = ∅ (later on C1 and C2 will be specified to be Ĉ1 and Ĉ2). We define v(C1, C2) = (v1, . . . , vn)⊤ with

vi = 1
|C1|

1{i ∈ C1} − 1
|C2|

1{i ∈ C2}.

Let
P ⊥

v(C1,C2) = In − v(C1, C2)v(C1, C2)⊤

∥v(C1, C2)∥2
2

be the projection matrix associated with the orthogonal complement of the vector v(C1, C2). For a vector
u ∈ Rq, we define dir(u) = u/∥u∥2 as the direction of u. We first notice some facts for multivariate normal
distribution:

• Fact 1: X̄C1 − X̄C2 = X⊤v(C1, C2) and P ⊥
v(C1,C2)X are independent.

• Fact 2: ∥X̄C1 − X̄C2∥2 and dir(X̄C1 − X̄C2) are independent under the null that µ̄C1 = µ̄C2 .

Now we define the p-value

p(x, C1, C2) = PH0,C1,C2

(
∥X̄C1 − X̄C2∥2 ≥ ∥x̄C1 − x̄C2∥2

∣∣∣C1, C2 ∈ C(X), P ⊥
v(C1,C2)X = P ⊥

v(C1,C2)x,

dir(X̄C1 − X̄C2) = dir(x̄C1 − x̄C2)
)

,
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which will be shown to be valid. Conditional on P ⊥
v(C1,C2)X = P ⊥

v(C1,C2)x and dir(X̄C1 − X̄C2) = dir(x̄C1 − x̄C2),
we have

X =P ⊥
v(C1,C2)X + v(C1, C2)v(C1, C2)⊤

∥v(C1, C2)∥2
2

X

=P ⊥
v(C1,C2)X + v(C1, C2)(X̄C1 − X̄C2)⊤

∥v(C1, C2)∥2
2

=P ⊥
v(C1,C2)X + ∥X̄C1 − X̄C2∥2

|C1|−1 + |C2|−1 v(C1, C2)dir(X̄C1 − X̄C2)⊤

=P ⊥
v(C1,C2)x + ∥X̄C1 − X̄C2∥2

|C1|−1 + |C2|−1 v(C1, C2)dir(x̄C1 − x̄C2)⊤,

where ∥v(C1, C2)∥2
2 = |C1|−1 + |C2|−1. In this case, the event C1, C2 ∈ C(X) is equivalent to ∥X̄C1 − X̄C2∥2 ∈

S(x, C1, C2) where

S(x, C1, C2) =
{

ϕ ≥ 0 : C1, C2 ∈ C
(

P ⊥
v(C1,C2)x + ϕ

|C1|−1 + |C2|−1 v(C1, C2)dir(x̄C1 − x̄C2)⊤
)}

Using Facts 1-2, the p-value can be rewritten as

p(x, C1, C2) =PH0,C1,C2

(
∥X̄C1 − X̄C2∥2 ≥ ∥x̄C1 − x̄C2∥2

∣∣∣∥X̄C1 − X̄C2∥2 ∈ S(x, C1, C2), P ⊥
v(C1,C2)X = P ⊥

v(C1,C2)x,

dir(X̄C1 − X̄C2) = dir(x̄C1 − x̄C2)
)

=PH0,C1,C2

(
∥X̄C1 − X̄C2∥2 ≥ ∥x̄C1 − x̄C2∥2

∣∣∣∥X̄C1 − X̄C2∥2 ∈ S(x, C1, C2)
)

=1 − F
(
∥x̄C1 − x̄C2∥2; σ(|C1|−1 + |C2|−1), S(x, C1, C2)

)
,

where F (·; c, S) denotes the cdf of a c · χq random variable truncated to the set S. Essentially, in the above
derivation, we use the fact that conditional on C1, C2 ∈ C(X), P ⊥

v(C1,C2)X = P ⊥
v(C1,C2)x and dir(X̄C1 − X̄C2) =

dir(x̄C1 − x̄C2), ∥X̄C1 − X̄C2∥2 follows the truncated σ(|C1|−1 + |C2|−1) · χq distribution.

Under H0,C1,C2 , we claim that

PH0,C1,C2
(p(X, C1, C2) ≤ α|C1, C2 ∈ C(X)) ≤ α.

Proof. For the ease of notation, we write F (x) = F
(
x; σ(|C1|−1 + |C2|−1), S(x, C1, C2)

)
. From the above

discussion, we know that

PH0,C1,C2

(
p(X, C1, C2) ≤ α

∣∣∣C1, C2 ∈ C(X), P ⊥
v(C1,C2)X = P ⊥

v(C1,C2)x, dir(X̄C1 − X̄C2) = dir(x̄C1 − x̄C2)
)

=PH0,C1,C2

(
1 − F (∥X̄C1 − X̄C2∥2) ≤ α

∣∣∣C1, C2 ∈ C(X), P ⊥
v(C1,C2)X = P ⊥

v(C1,C2)x, dir(X̄C1 − X̄C2) = dir(x̄C1 − x̄C2)
)

=PH0,C1,C2

(
∥X̄C1 − X̄C2∥2 ≥ F −1(1 − α)

∣∣∣C1, C2 ∈ C(X), P ⊥
v(C1,C2)X = P ⊥

v(C1,C2)x, dir(X̄C1 − X̄C2) = dir(x̄C1 − x̄C2)
)

=1 − F (F −1(1 − α)) = α.

Therefore,

PH0,C1,C2

(
p(X, C1, C2) ≤ α

∣∣∣C1, C2 ∈ C(X)
)

= α.
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In practice, the p-value can be computed using the Monte Carlo method. Recall that

p(x, Ĉ1, Ĉ2) =
P

(
ϕ ≥ ∥x̄Ĉ1

− x̄Ĉ2
∥2, ϕ ∈ S(x, Ĉ1, Ĉ2)

)

P

(
ϕ ∈ S(x, Ĉ1, Ĉ2)

) ,

where ϕ ∼ σ

√
|Ĉ1|−1 + |Ĉ2|−1χq. We can approximate the numerator by

1
B

B∑
i=1

1
{

ϕi ≥ ∥x̄Ĉ1
− x̄Ĉ2

∥2, ϕi ∈ S(x, Ĉ1, Ĉ2)
}

,

where ϕ1, . . . , ϕB are independent σ

√
|Ĉ1|−1 + |Ĉ2|−1χq random variables.

High-level idea. The key difference with the classical inference setting is that the hypothesis to be tested
(say H0(X)) depends on the data (instead of being pre-determined before the data collection process). The
hypothesis to be tested can be described by an event of the data X ∈ A for some set A. In our case, given
C1, C2,

{X ∈ A} = {C1, C2 ∈ C(X)}.

Suppose we use a test statistic T (X) to test the hypothesis H0(X). Let t = T (x) be the realization of T (X)
based on x (a realization of X). In selective inference, a valid p-value can be defined

P (T (X) ≥ t|X ∈ A).

However, it may be difficult to evaluate this probability. The essential idea is to express the event {X ∈ A} as

{(T (X), S(X)) ∈ B}

where S(X) is independent of T (X). Conditional on S(X) = S(x), we define the p-value to be

P (T (X) ≥ t|X ∈ A, S(X) = S(x))
=P (T (X) ≥ t|(T (X), S(x)) ∈ B, S(X) = S(x))
=P (T (X) ≥ t|(T (X), S(x)) ∈ B),

which is related to a truncated distribution.

4 Selective Inference for Lasso
The section relies on the work of Lee et al. (2016). To get confidence intervals that are shorter than those
from POSI, we restrict the analyst’s choice. We require that the selection M̂ is simply the set of variables
selected by Lasso regression for a fixed λ. This is a weakness of this approach since λ is often chosen using
cross-validation. We assume the setting:

y ∼ N(µ, σ2I) and µ = Xβ.

The Lasso selection event is as follows:

β̂ = argminb

1
2∥y − Xb∥2

2 + λ∥b∥1 =⇒ M̂ = {j : β̂j ̸= 0}.

The objects of inference are the regression coefficients in the reduced model,

β
M̂

:= (X⊤
M̂

X
M̂

)−1X⊤
M̂

µ = argminbE[∥y − X
M̂

b∥2|X],
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Figure 2: A geometric picture illustrating the Lasso selection events.

where M̂ is random. The goal is to construct confidence intervals covering the parameters β
M̂

.

Figure 2 is a visualization of the Lasso selection event when n = 2 and p = 3. The signs in each region
represent the signs of the coefficient estimates the Lasso will produce when the data y falls in that region.
Each region is a polytope {y : Ay ≤ b}, which can be written as an intersection of half-spaces {aiy ≤ bi},
where ai is the ith row of A. These polytopes are easily described via KKT conditions:

X ′
j(y − Xβ̂) = λsign(β̂j) if β̂j ̸= 0,

|X ′
j(y − Xβ̂)| ≤ λ if β̂j = 0.

Note that a linear equality constraint, as in the case when β̂j ̸= 0, can also be written as two linear inequality
constraints. Thus, we can write the KKT condition as

Ay ≤ b,

where it can be shown that A and b only depends on the selected model M̂ and the signs of the non-zero
coefficients ŝ; see Lemma 4.1 of Lee et al. (2016).

The main idea of this work is to condition on the selection event and the signs of the fitted coefficients (i.e.,
ŝ = s):

y|{M̂ = M, ŝ = s} ∼ N(µ, σ2I)1(Ay ≤ b).

This is a truncated multivariate normal distribution, truncated to a polytope. If we didn’t condition on
the signs, we would get a multivariate normal truncated to a union of many polytopes, which would not be
practical to work with.

We wish to do inference about β
j•M̂

= η⊤µ for η⊤ being the jth row of (X⊤
M̂

X
M̂

)−1X⊤
M̂

. A natural statistic
to use is η⊤y ∼ N(η⊤µ, σ2∥η∥2). In order to do selective inference, we are interested in the distribution of
η⊤y|{Ay ≤ b}, which is a complicated mixture of truncated normals that will be computationally expensive
to sample from. To make this approach computationally tractable, we also condition on the value of the
projection of y onto the space perpendicular to η, Pη⊥y.

η⊤y|{Ay ≤ b, Pη⊥y = z} d= TN(η⊤µ, σ2∥η∥2, I) d= TN(η⊤µ, σ2∥η∥2, [V−(z), V+(z)])

This is a truncated normal distribution for some truncation interval I. The truncation interval I is the line
segment with endpoints V− and V+, which is the intersection of the polytope {Ay ≤ b} with Pη⊥y, illustrated
in Figure 3.
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Figure 3: Intersection of the polytope {Ay ≤ b} with Pη⊥y = z

The equality in distribution above is not trivial and crucially uses the fact that η⊤y and Pη⊥y are independent
since they are projections of a Gaussian vector with independent components along orthogonal directions.

Theorem. With F µ,σ2

[a,b] the CDF of TN(µ, σ2, [a, b]),

F
η⊤µ,σ2∥η∥2

[V−(z),V+(z)](η
⊤y)|{Ay ≤ b, Pη⊥y = z} d= Unif(0, 1),

where z is computed from the observed dataset. Hence, by integrating over Pη⊥y, we obtain a pivotal
quantity:

T := F
η⊤µ,σ2∥η∥2

[V−(z),V+(z)](η
⊤y)|{Ay ≤ b} ∼ Unif(0, 1).

Figure 4: Uniformly distributed p-values.

Using computer simulations, we can see empirically that this pivotal quantity indeed follows a Unif(0, 1)
distribution, as shown in Figure 4.

We can invert this pivotal quantity to obtain intervals with conditional type-I error control:

Cj =
{

β : α

2 ≤ F
β,σ2∥η∥2

[V−(z),V+(z)](η
⊤y) ≤ 1 − α

2

}
.

We then get the conditional coverage

P (βj•M ∈ Cj |M̂ = M, ŝ = s) ≥ 1 − α,

which implies
P (βj•M ∈ Cj |M̂ = M) ≥ 1 − α,

and the false coverage rate (FCR) control:

E

#{j ∈ M̂ : Cj does not cover β
j•M̂

}

|M̂ |

 ≤ α.
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We want to remove the condition ŝ = s for more precise inference. However, doing so would force us to deal
with many polytopes (too expensive computationally).

A few closing remarks on the described approach:

• We obtain shorter confidence intervals than with POSI but we have to commit to Lasso with fixed λ.

• One other downside of this method is that computation is often numerically unstable because if there
are many variables, the polytopes corresponding to specific sign patterns may be very small. This can
lead to calculations involving very small probabilities.
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