
STAT 689: Large-scale and high-dimensional statistical inference Fall 2024

Lecture 15

In this lecture, we will discuss applications of some of the techniques we have learned in the context of large
language models. In particular, we shall focus on the following two topics:

• Detecting AI-Generated Content Using Watermarking;

• Test Sets Contamination;

• Guaranteeing Factual Reliability of Outputs.

1 Detecting AI-Generated Content Using Watermarking
With the increasing use of large language models in recent years, it has become essential to differentiate
between text generated by these models and text written by humans. Some of the most advanced LLMs, such
as GPT-4, Llama 3, and Gemini, are very good at producing human-like texts, which could be challenging
to distinguish from human-generated texts, even for humans. However, it is crucial to distinguish between
human-produced texts and machine-produced texts to prevent the spread of misleading information, improper
use of LLM-based tools in education, model extraction attacks through distillation, and the contamination of
training datasets for future language models.

1.1 Generative watermarking
Watermarking is a principled method for embedding nearly unnoticeable statistical signals into text generated
by LLMs, enabling provable detection of LLM-generated content from its human-written counterpart. This
work focuses on a scenario where an untrusted third-party user sends prompts to a trusted large language
model (LLM) provider, who then generates a text from their LLM with a watermark. This makes it possible
for a detector to later identify the source of the text if the user publishes it. The user is allowed to modify
the generated text by making substitutions, insertions, or deletions before publishing it.

Figure 1: An illustration of generative watermarking for LLMs.

1.2 Watermarked text generation
Denote by V the vocabulary, and let P be an autoregressive LLM which maps a string y−n0:t−1 =
y−n0y−n0+1 · · · yt−1 ∈ Vt+n0 to a distribution over the vocabulary, with p(·|y−n0:t−1) being the distribution
of the next token yt. Here y−n0:0 denotes the prompt provided by the user.

For ease of notation, we will assume that V = {1, 2, . . . , V }, where V is the vocabulary size. Let ξ1:t = ξ1ξ2 · · · ξt

be a watermark key sequence with ξi ∈ Ξ for each i, where Ξ is a general space. Given a prompt sent
from a third-party user, the LLM provider calls a generator to autoregressitvely generate text from an
LLM using a decoder function Γ, which maps ξt and a distribution pt over the next token to a value in V.

1



Figure 2: A simplified illustration of autoregressive LLMs.

The watermarking scheme should preserve the original text distribution, i.e., P (Γ(ξt, pt) = y) = pt(y). A
watermark text generation algorithm recursively generates a string y1:n by

yi = Γ(ξi, p(·|y−n0:i−1)), 1 ≤ i ≤ n,

where n is the number of tokens in the text y1:n generated by the LLM, and ξi’s are assumed to be
independently generated from some distribution ν over Ξ. In other words, given p(·|y−n0:i−1), yi is completely
determined by ξi and y−n0:i−1.

Definition. A watermarking scheme is distortion-free if

P (yi = k) = p(k|y−n0:i−1).

In other words, the watermarking scheme preserves the original text distribution.

Example 1. Consider a simple setting where V = {0, 1}. A simple way to generate yi is by setting

yi = 1{ξi ≤ p(1|y−n0:i−1)},

where ξi is generated from the uniform distribution. It is clear that

P (yi = 1) = P (ξi ≤ p(1|y−n0:i−1)) = p(1|y−n0:i−1).

Therefore, this watermarking scheme is distortion-free.

Example 2. We discuss another scheme called exponential minimum sampling (EMS) proposed in Aaronson
(2023). To generate each token of a text, we first sample ξik ∼ Unif[0, 1] independently for 1 ≤ k ≤ V . Let

yi = arg max
1≤k≤V

log(ξik)
p(k|y−n0:i−1) = arg min

1≤k≤V

− log(ξik)
p(k|y−n0:i−1) = arg min

1≤k≤V
Eik,

where Eik := − log(ξik)/p(k|y−n0:i−1) ∼ Exp(p(k|y−n0:i−1)) with Exp(a) denoting an exponential random
variable with the rate a.

Exercise 15.1. For two exponential random variables X ∼ Exp(a) and Y ∼ Exp(b), we have two basic
properties: (i) min(X, Y ) ∼ Exp(a + b); (ii) P (X < Y ) = E[1 − exp(−aY )] = a/(a + b). Using (i) and (ii),
show that

P (yi = k) = P

(
Eik < min

j ̸=k
Eij

)
= p(k|y−n0:i−1).

Hence, EMS preserves the original text distribution.

2



1.3 Watermark detection
We now consider the detection problem, which involves determining whether a given text is watermarked or
not. Consider the case where a string ỹ1:m is published by the third-party user, and a key sequence ξ1:n is
provided to a detector. The detector calls a detection method to test

H0 : ỹ1:m is not watermarked versus Ha : ỹ1:m is watermarked,

by computing a p-value with respect to a test statistic ϕ(ξ1:n, ỹ1:m). It is important to note that the text
published by the user can be quite different from the text initially generated by the LLM using the key ξ1:n,
which we refer to as y1:n. To account for this difference, we can use a transformation function E that takes
y1:n as the input and produces the published text ỹ1:m as the output, i.e.,

ỹ1:m = E(y1:n).

This transformation can involve substitutions, insertions, deletions, paraphrases, or other edits to the input
text.

The test statistic ϕ measures the dependence between the text ỹ1:m and the key sequence ξ1:n. Throughout
our discussions, we will assume that a large value of ϕ provides evidence against the null hypothesis (e.g.,
stronger dependence between ỹ1:m and ξ1:n). To obtain the p-value, we consider a randomization test. In
particular, we generate ξ

(t)
i ∼ ν independently over 1 ≤ i ≤ n and 1 ≤ t ≤ T , and ξ

(t)
i s are independent with

ỹ1:m. Then the randomization-based p-value is given by

pT = 1
T + 1

(
1 +

T∑
t=1

1{ϕ(ξ1:n, ỹ1:m) ≤ ϕ(ξ(t)
1:n, ỹ1:m)}

)
.

Exercise 15.2. Show that pT is super uniform, i.e., P (pT ≤ x) ≤ x for any x ∈ [0, 1].

As the published text can be modified, it is not expected that every token in ỹ1:m will be related to
the key sequence. Instead, we expect certain sub-strings of ỹ1:m to be correlated with the key sequence
under the alternative hypothesis Ha. To measure the dependence, we use a scanning method that looks
at every segment/sub-string of ỹ1:m and a segment of ξ1:n with the same length B. We use a measure
M(ξa:a+B−1, ỹb:b+B−1) to quantify the dependence between ξa:a+B−1 and ỹb:b+B−1, chosen based on the
watermarked text generation method described above. Examples of M include

• Pearson correlation;

• Rank correlation;

• Edit distance;

• Other distance used in computational linguistics.

Given M and the block size B, we can define the maximum test statistic as

ϕ(ξ1:n, ỹ1:m) = max
1≤a≤n−B+1

max
1≤b≤m−B+1

M(ξa:a+B−1, ỹb:b+B−1).

The maximum statistic is more sensitive to a watermarked sub-string (think about the maximum test or the
Bonferroni correction).

2 Test Sets Contamination
Large language models (LLMs) have significantly improved performance on various natural language processing
benchmarks. These advancements are primarily due to extensive pretraining using massive datasets gathered
from the internet. However, because of the minimal curation of these datasets, concerns have arisen
regarding dataset contamination—where the pretraining dataset includes certain evaluation benchmarks.

3



This contamination complicates our ability to accurately assess the true performance of language models,
raising questions about whether they are simply memorizing answers to challenging exam questions.

Understanding the balance between generalization and memorization of test sets is crucial for evaluating
language model performance. Unfortunately, this task has become increasingly challenging, as many of the
pretraining datasets used in contemporary language models are rarely made public.

In this section, we will consider a recent statistical method that aims to identify the presence of a benchmark
in the pre-training dataset of an LLM with provable Type I error rate guarantees without access to the
training data. To ensure this, one approach is to leverage the property of exchangeability found in many
datasets. This property means that the order of examples within the dataset can be shuffled without affecting
its joint distribution. The insight is that if a language model shows a preference for a specific ordering of
the dataset—such as a canonical ordering found in publicly available repositories—it indicates a violation of
exchangeability. This preference can only arise if the model has observed the dataset during training.

Figure 3: Test for contamination based on the canonical order.

Suppose we want to identify whether the training process of an LLM P included a dataset X. Statistically,
this can be formulated as a hypothesis-testing problem:

H0 : P is independent of X versus Ha : P is dependent on X,

where we treat P as a random variable whose randomness arises from a combination of the draw of the
pretraining dataset (potentially including X). We write X = (X1, . . . , Xn), where Xi represents the ith
example in the dataset. Given a permutation π of (1, 2, . . . , n), we define

Xπ = (Xπ(1), . . . , Xπ(n)).
We let P(X) = P(X1, . . . , Xn) be the probability that the LLM generates the text X. We assume that the
exchangeability of X, i.e.,

X
d= Xπ

for any permutation π.

Lemma. For an exchangeable X and under the H0, we have

log P(X) d= log P(Xπ).
Proof. Since X is exchangeable and P is independent of X, we must have

(P, X) d= (P, Xπ),

which implies that log P(X) d= log P(Xπ).

To perform the test, we can calculate the p-value,

p =
1 +

∑m
i=1 1{log P(X) ≤ P(Xπi)}

m + 1 .

based on m permutations π1, . . . , πm. Under H0, p is super uniformrm. Under the alternative, P(X) is
expected to be larger than P(Xπi

), and thus, the p-value will be small.

4



Figure 4: P-values for contamination tests on open models and benchmarks.

3 Guaranteeing Factual Reliability of Outputs
LLMs have increasingly been adopted in various domains. However, LLM outputs cannot be fully trusted
due to their tendency to generate hallucinations and non-factual content. In this section, we will learn how
to use conformal prediction to enable such high-probability correctness guarantees for black-box LLMs.

Figure 5: Conformal factuality uses conformal prediction to ensure the correctness of LLM outputs.

3.1 Correctness via entailments
In the standard text generation setting, an LLM P receives an input/prompt x from the user and generates
an output y = P(x) ∈ Y, where Y is the space of outputs for the LLM. Similarly, we let X be the space of
the inputs. Let y∗ ∈ Y be a ground truth. A key problem with LLMs is that the output y may not be fully
supported by y∗. As it is difficult to ensure the correctness of every LLM output, a more reasonable goal
would be to provide high-probability guarantees such that for any user-specified probability α ∈ (0, 1), the
LLM is correct with probability at least 1 − α over some distribution P. We express this goal as

P(y is correct and factual) ≥ 1 − α.

The first question is how we can formalize this correctness constraint. Here, we shall adopt the notion of
entailments with respect to some reference knowledge y∗ where the correctness is equivalent to the entailment
relation

y∗ =⇒ y.

5



Representing factuality and correctness via entailments to a reference is quite general, as we can set y∗ to be
a broad knowledge base such as “Wikipedia pages related to the input x” or even “all facts accessible via
Google” to handle the case where there is no ground truth response for the input x.

The factuality constraint y∗ =⇒ y can be equivalently written as a set containment relation

y∗ ∈ E(y) := {y′ ∈ Y : y′ =⇒ y}.

We now show how the conformal inference could be useful in the current setting. In conformal prediction, we
are given a set of exchangeable samples (Xi, Yi)n

i=1 and a future covariate Xn+1. The goal is to construct a
prediction set C(Xn+1) such that

P(Yn+1 ∈ C(Xn+1)) ≥ 1 − α.

To utilize conformal inference, we shall replace C(Xn+1) with the entailment set E(P(Xn+1)) of an LLM
output P(Xn+1) with the input Xn+1. Let Yn+1 be the ground truth associated with Xn+1. Our goal is thus
to ensure that

P(Y ∗
n+1 ∈ E(P(Xn+1))) ≥ 1 − α,

where the event Y ∗
n+1 ∈ E(P(Xn+1)) is equivalent to the event that P(Xn+1) is correct according to Y ∗

n+1.

3.2 Split conformal inference revisited
We revisit the split conformal inference approach and adapt it to the current setting. The description below
is somewhat more general than what we have learned. Let {Gt(x)}t∈T denote a sequence of output sets
satisfying that Gt(x) ⊂ Gt′(x) for t ≤ t′. Consider the score

S(x, y) = inf{t ∈ T : y ∈ Gt(x)}. (1)

This can be thought of as the minimum safe threshold where y ∈ Gt(x) for every t > S(x, y). Split conformal
prediction then sets the final confidence set as

C(x) = Gqα
(x),

where qα is the ⌈(n + 1)(1 − α)⌉/nth quantile of these scores S(Xi, Yi) for i = 1, 2, . . . , n. We note that

Yn+1 ∈ C(Xn+1) ⇔ Yn+1 ∈ Gqα(Xn+1)

which then implies that

S(Xn+1, Yn+1) ≤ ⌈(1 − α)(n2 + 1)⌉ smallest of S(Xi, Yi), i = 1, 2, . . . , n.

Using what we learn from Lecture 11, we have

P(Yn+1 ∈ C(Xn+1)) ≥ 1 − α.

3.3 Application to LLM
The correctness of an LLM output y is equivalent to the event y∗ ∈ E(y), and we seek to find some y that
makes this event hold with probability at least 1 − α. To this end, we construct sequences of outputs {yt}t∈T ,
which induces sequences of sets {E(yt)}t∈T on which we can apply conformal prediction.

To employ conformal prediction methods, we shall define the conformal sets {Gt(x)}t∈T and the score S(x, y).
For the conformal sets, we will define these sets using the entailment operator E as Gt(x) = E(Ft(x, P(x)))
where Ft : X × Y 7→ Y is a ‘back off’ function and the threshold t ∈ T ⊆ R controls how much Ft(x, y0) ‘backs
off’ from the base output y0 by removing (unreliable) claims. We call Ft sound if it satisfies the property
that Fsup T (x, y0) = ∅, where ∅ represents some output sequence that abstains from making any claim. For

6



Figure 6: An example of Ft(x) for t ∈ T .

notational clarity, we will omit the second argument whenever there is only one relevant language model
P(x) that can generate y0. In this case, we use the shorthand Ft(x) := Ft(x, P(x)).

For the score function, we can redefine the score in (1) as

S(x, y∗) := inf{t ∈ T : ∀j ≥ t, y∗ ∈ E(Fj(x))}.

This matches the original score with one minor modification where we take the minimum strictly safe
threshold—we consider a threshold strictly safe if any threshold greater than or equal to this one is safe. For
the example in Figure 5, if we add y3 = ∅ and define Ft(x) := yt, we would have the minimum strictly safe
threshold r(x, y∗) = 2.

With these two components in hand, we can directly apply the split conformal prediction method to obtain
an LM with our desired correctness guarantees. Formally, we say that a model P is α-conformally factual if
for exchangeable (Xi, Y ∗

i ) ∈ X × Y, i ∈ [n + 1] and {(Xi, Y ∗
i )}n

i=1 used to construct P̃, the reference output
Y ∗

n+1 satisfies the following inequality:

P(Y ∗
n+1 ∈ E(P̃(Xn+1))) ≥ 1 − α.

The procedure can be described as follows.

1. For 1 ≤ i ≤ n, define
S(Xi, Y ∗

i ) := inf{t ∈ T : ∀j ≥ t, Y ∗
i ∈ E(Fj(Xi))}.

2. Let qα be the ⌈(n + 1)(1 − α)⌉/nth quantile of these scores S(Xi, Yi) for i = 1, 2, . . . , n.

3. Output Fqα(Xn+1)

Theorem. Suppose {(Xn+1, Y ∗
n+1)} are exchangeable, and Ft is sound. Then for α ≥ 1/(n + 1), we have

P(Y ∗
n+1 ∈ E(Fqα

(Xn+1))) ≥ 1 − α.

7



Figure 7: Comparison of original output by GPT-4 versus our modified output from conformal factuality
with frequency scoring.

Proof. By the exchangeability, we have

P (S(Xn+1, Y ∗
n+1) ≤ qα) = ⌈(n + 1)(1 − α)⌉

n + 1 ≥ 1 − α.

Note that S(Xn+1, Y ∗
n+1) ≤ qα implies that Y ∗

n+1 ∈ E(Fqα(Xn+1)), i.e., Y ∗
n+1 =⇒ Fqα(Xn+1). Thus

P(Y ∗
n+1 =⇒ Fqα(Xn+1)) ≥ 1 − α.

8


	Detecting AI-Generated Content Using Watermarking
	Generative watermarking
	Watermarked text generation
	Watermark detection

	Test Sets Contamination
	Guaranteeing Factual Reliability of Outputs
	Correctness via entailments
	Split conformal inference revisited
	Application to LLM


