
STAT 689: Large-scale and high-dimensional statistical inference Fall 2024

Lecture 2

1 Fisher’s combination tests (L2 tests)
As we have shown in the previous lecture, the Bonferroni’s method (or equivalently the maximum test) is
optimal for detecting sparse and strong signals (the “needle in a haystack” alternative). It is interesting to
ask if a similar result can be established for Fisher’s combination test for detecting dense and weak signals.

Instead of considering the original definition of the Fisher’s combination test which is hard to analyze, we
consider the Gaussian location model and a L2 type test. More precisely, we consider the model

zi = ξi + µi, ξi ∼i.i.d N(0, 1), i = 1, 2, . . . , n,

and the hypotheses

H0 : µ1 = µ2 = · · · = µn = 0 versus Ha : µi ̸= 0 for some 1 ≤ i ≤ n.

We consider the L2 test defined as

Tn = ∥z∥2
2 =

n∑
i=1

z2
i .

The L2 type test (or χ2 test as T ∼ χ2
n under H0) is powerful for detecting weak and dense signals. When

n → +∞, we can consider the test after centering and standardization:

Zn := Tn − n√
2n

=
∑n

i=1 ξ2
i − n√

2n
→d N(0, 1).

Therefore, we reject H0 if

Zn ≥ z1−α,

where z1−α is the 1 − α quantile of N(0, 1).

Under either H0 or Ha, we have

Tn =
n∑

i=1
(ξi + µi)2 =

n∑
i=1

ξ2
i + ∥µ∥2 + 2

n∑
i=1

ξiµi,

where ∥µ∥2 =
∑n

i=1 µ2
i .

Exercise 2.1: Assuming ∥µ∥ = o(
√

n), prove that
∑n

i=1 ξiµi/
√

n = op(1) and in this case, we have

Tn − (n + ∥µ∥2)√
2n

→d N(0, 1).

More generally, without any assumption on ∥µ∥, we have

Tn − (n + ∥µ∥2)√
2n + 4∥µ∥2

→d N(0, 1).

Note: use the fact E[ξ3
i ] = 0 in the proof.
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2 Power function for L2 tests
Our first goal is to derive a detection threshold for the L2 test. We first define θn = ∥µ∥2/

√
2n which is

proportional to the signal-to-noise (SNR) ratio. The power function of Tn is given by

β(θn) :=PHa

(
Tn − n√

2n
≥ z1−α

)
=PHa

(
Tn − (n + ∥µ∥2)√

2n + 4∥µ∥2
≥

√
2nz1−α − ∥µ∥2√

2n + 4∥µ∥2

)

≈PHa

(
Z ≥

√
2nz1−α − ∥µ∥2√

2n + 4∥µ∥2

)

=1 − Φ

 z1−α − θn√
1 + θn/

√
n/8

 ,

where Z ∼ N(0, 1) and the approximation to due Exercise 1. We have the following cases:

• θn = o(1), β(θn) → α;

• θn → c < ∞, we have β(θn) → 1 − Φ(z1−α − c);

• θn → +∞, β(θn) → 1.

Similar to the analysis for Bonferroni’s test, we consider the following problem: H0 : µ = 0 versus
Ha : µ ∼ π

(n)
ρ , where π

(n)
ρ is a uniform distribution on the sphere with radius ρ. In other words, µ = ρu,

where u is uniformly distributed on the unit sphere Sn−1. By the Neyman-Pearson Lemma, we know that
the optimal test for this pair of hypotheses rejects for large values of the likelihood ratio. Under Ha, the
distribution of z after integrating out µ is given by

1
(2π)n/2

∫
Sn−1

exp(−∥z − ρu∥2/2)dπ
(n)
1 (u).

Thus, the likelihood ratio statistic is equal to

Ln(z) =
∫

Sn−1 exp(−∥z − ρu∥2/2)dπ
(n)
1 (u)

exp(−∥z∥2/2)

=
∫

Sn−1
exp(−ρ2∥u∥2/2 + ρz⊤u)dπ

(n)
1 (u)

=
∫

Sn−1
exp(−ρ2/2 + ρz⊤u)dπ

(n)
1 (u).

Claim: When ρ2/
√

2n → 0, Ln →p 1 under H0. In this case, the Neyman-Pearson test is asymptotically no
better than flipping a biased coin.

Let P and Q be two measures on a measurable space (Ω, A). We say that Q is absolutely continuous with
respect to P if P (A) = 0 implies that Q(A) = 0 for every measurable set A; this is denoted by Q ≪ P . We
now consider an asymptotic version of the absolute continuity. Let (Ωn, An) be measurable spaces, each
equipped with a pair of probability measures Pn and Qn.

Definition. The sequence Qn is contiguous with respect to the sequence Pn if Pn(An) → 0 implies that
Qn(An) → 0 for every sequence of measurable sets An.

The name “contiguous” is standard but perhaps conveys a wrong image. ‘contiguity” suggests sequences of
probability measures living next to each other, but the correct image is “on top of each other” in the limit.

Step I: We first state a version of LeCam’s first Lemma; see Lemma 6.4 of van der Vaart’s book, Asymptotic
Statistics.
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LeCam’s first Lemma. Let Pn and Qn be sequences of probability measures on measurable spaces (Ωn, An).
Then the following are equivalent:

1. Qn is contiguous with respect to Pn.

2. If dQn/dPn ⇝Pn V along a subsequence, then E[V ] = 1.

In the second statement above, you shall think of dQn/dPn : Ωn → [0, ∞) as a random variable and study its
law under Pn.

To apply this Lemma, we let Qn be the distribution under Ha and Pn be the distribution under H0. Then
Ln = dQn/dPn. When Ln →p 1 under H0, Condition 2 is fulfilled, and hence by LeCam’s first Lemma, Qn

is contiguous with respect to Pn. We next state LeCam’s third Lemma; see Theorem 6.6 of van der Vaart’s
book.

LeCam’s third Lemma. Let Pn and Qn be sequences of probability measures on measurable spaces
(Ωn, An). Let Tn : Ωn → Rk be a sequence of random vectors. Suppose Qn is contiguous with respect to Pn

and
(Tn, dQn/dPn)⇝Pn (T, V ).

Then Tn ⇝Qn T̃ , where T̃ is a random vector with the distribution

P (T̃ ∈ B) = E[1{T ∈ B}V ].

In our case, we let Tn be some test statistic, where Tn converges to T in distribution under the null. As
V = 1, P (T̃ ∈ B) = P (T ∈ B), which indicates that Tn has the same limiting distribution under both the
null and the alternative. Thus, it must be asymptotically powerless.

Step II: To complete the proof, we now show that Ln →p 1 under H0. Clearly, E0[Ln]=1. We aim
to show that var(Ln|H0) → 0 or equivalently E0[L2

n] − 1 → 0. As z ∼ N(0, I) under the null, we have
E0[exp(z⊤t)] = exp

(
∥t∥2/2

)
and thus

E0[L2
n] =

∫
Sn−1

∫
Sn−1

E exp(−ρ2 + ρz⊤u + ρz⊤v)dπ
(n)
1 (u)dπ

(n)
1 (v)

=
∫

Sn−1

∫
Sn−1

exp(−ρ2 + ρ2∥u + v∥2/2)dπ
(n)
1 (u)dπ

(n)
1 (v)

=
∫

Sn−1

∫
Sn−1

exp(ρ2u⊤v)dπ
(n)
1 (u)dπ

(n)
1 (v)

=
∫

Sn−1

∫
Sn−1

exp(ρ2u⊤v)dπ
(n)
1 (u)dπ

(n)
1 (v).

Given v, we can consider a rotation B such that (Bu)⊤v = u1 and Bu still follows a uniform distribution on
the sphere. Thus we have

E0[L2
n] =

∫
Sn−1

∫
Sn−1

exp(ρ2u⊤v)dπ
(n)
1 (u)dπ

(n)
1 (v)

=
∫

Sn−1
exp(ρ2u1)dπ

(n)
1 (u)

=E[exp(ρ2u1)].

Using the Taylor expansion and the fact that E[u2
1] = 1/n, we have

E0[L2
n] = 1 + E[ρ2u1 + ρ4u2

1/2 + ρ4u3
1/6 + · · · ] = 1 + ρ4

2n
(1 + o(1)) = 1 + o(1).
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3 Comparison of Bonferroni’s and L2 tests
We now provide a qualitative characterization of the sets of alternatives for which the Bonferroni and L2
tests are most powerful. Recall the in theory

• Bonferroni test’s power is determined by maxi |µi|.

• L2 test’s power is determined by θn =
∑n

i=1 µ2
i /

√
2n.

We consider two examples in which the tests have very different power characteristics.

Example 1. Suppose n3/8 components of µ are equal to 1.1
√

2 log(n). Then we have θn =
2.42n3/8 log(n)/

√
2n → 0. Hence the L2 test is powerless. In contrast, as maxi |µi| = 1.1

√
2 log(n),

Bonferroni test has power approaching one.

Example 2. Consider the case where
√

2n components of µ are equal to a. In this case, θn = a2. For large
n, the L2 test’s power is approximately 1 − Φ

(
z1−α − a2). With α = 0.05 and a = 2, the power is about

99%. On the other hand, Bonferroni’s test is asymptotically powerless because maxi |µi| = a.
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