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Lecture 3

1 Recap and motivation
Previously, we have introduced and discussed two global testing procedures, namely Bonferroni’s method and
the L2 test. But each of these has its pros and cons.

• If our data exhibit strong, sparsely distributed signals, then Bonferroni’s method excels and is optimal
in the “needle in a haystack” setting, but the L2 test performs very poorly.

• If our data exhibit small, widely distributed signals, the L2 test excels and is optimal, but Bonferroni’s
method is powerless.

Given these facts, we hope to develop an adaptive test that combines the strengths of Bonferroni and L2.

2 Simes test
Suppose we observe a sequence of p-values, which can be ordered as p(1) ≤ p(2) ≤ · · · ≤ p(n). At level α,
Bonferroni’s method rejects the global null when p(1) ≤ α/n. The Simes considers an adaptive threshold for
each p(i). More precisely, it rejects the global null whenever

p(i) ≤ αi

n

for some i. If we define
Tn = min

1≤i≤n

(np(i)

i

)
,

Simes test rejects the null if Tn ≤ α. By construction, Simes test is less conservative compared to Bonferroni’s
method. (Why?)

Bonferron’s method considers only the smallest p-value and compares it with a threshold α/n. In contrast,
the Simes test considers all p-values and compares each ordered p-value with the corresponding threshold
αi/n.

Under the global null and assuming pi’s are independent, Tn ∼ Unif[0, 1]. As a result, P (Tn ≤ α) = α, i.e.,
the type I error is controlled at level α.

Proof. We prove the result using induction. If n = 1, the result is clearly true. Assume that Tn−1 ∼ Unif[0, 1],
we aim to show that Tn ∼ Unif[0, 1]. To this end, we note that for any 0 < x < 1

P (Tn ≤ α) =P

(
min

1≤i≤n

(np(i)

i

)
≤ α

)
=P

(
min

1≤i≤n−1

(np(i)

i

)
≤ α, p(n) > α

)
+ P (p(n) ≤ α)

=P

(
min

1≤i≤n−1

( (n − 1)p(i)

i

)
≤ (n − 1)α

n
, p(n) > α

)
+ αn.

The density of p(n) is given by f(t) = ntn−1 for t ∈ [0, 1] as P (p(n) ≤ t) = tn. Given p(n) = t, the other
p-values are uniformly distributed over [0, t] (Why?). Thus conditional on p(n) = t, by induction, we have

min
1≤i≤n−1

( (n − 1)p(i)

ti

)
∼ Unif[0, 1].
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It then implies that

P

(
min

1≤i≤n−1

( (n − 1)p(i)

i

)
≤ (n − 1)α

n
, p(n) > α

)
=n

∫ 1

α

tn−1P

(
min

1≤i≤n−1

( (n − 1)p(i)

ti

)
≤ (n − 1)α

tn

∣∣∣∣∣p(n) = t

)
dt

=n

∫ 1

α

tn−1 (n − 1)α
tn

dt

=
∫ 1

α

(n − 1)αtn−2dt

=α(1 − αn−1) = α − αn.

Therefore, we have P (Tn ≤ α) = α − αn + αn = α.

3 Goodness of fit tests
Under the global null, the p-values follow the uniform distribution on [0, 1]. Therefore, an alternative way of
testing the global null is to check if the distribution of the p-values is uniform. This is essentially a goodness
of fit testing problem.

3.1 Kolmogorov-Smirnov test

Suppose we observe X1, . . . , Xn
i.i.d∼ F . We aim to test the null hypothesis that

H0 : F = F0.

Let Fn be the empirical cdf. The Kolmogorov-Smirnoff test statistic is defined as

KSn =
√

n sup
t∈R

|Fn(t) − F0(t)|,

Under the null hypothesis,

KSn =
√

n sup
t∈R

|Fn(t) − F (t)| = sup
f∈F

|
√

n(Pn − P )f |

where F = {1[· ≤ t], t ∈ R}.

P -Donsker. A collection F of functions is called P -Donsker if the process {
√

n(Pn − P )f}f∈F converges to
a tight limit G indexed by F in L∞(F). Here, G is a Gaussian process. In particular,(√

n(Pn − P )f1, · · · ,
√

n(Pn − P )fk

) d→ (Gf1 , . . . , Gfk
) ,

where Cov(Gfi , Gfj ) = Cov(fi(X), fj(X)) and X ∼ P .

Theorem. Let F be a class of functions mapping from X to R, and let F be an envelop function of F , (i.e.
for any x ∈ X and any f ∈ F , |f(x)| ≤ F (x)). Suppose PF 2 < ∞ and∫ ∞

0
sup

Q

√
log N

(
F , L2(Q), ∥F∥L2(Q)ϵ

)
dϵ < ∞,

where the sup is over all finitely supported measure Q. Then F is P -Donsker. For the proof, please check the
STAT 620 notes.

We show that F = {1[· ≤ t], t ∈ R} is a Donsker class. To see this, we first note that the envelop function
can be taken as F ≡ 1. Second, one can show∫ ∞

0
sup

Q

√
log N(F , L2(Q), ϵ∥F∥L2(Q)) dϵ < ∞.
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Thus, we have
√

n(Pn − P )f →d GP (f) or equivalently

√
n(Fn(t) − F (t)) d→ GF (t),

where GF is a Brownian Bridge with Cov(GF (t), GF (s)) = F (t ∧ s) − F (t)F (s). Note that the map f 7→
supt∈R |f(t)| is continuous in ∥ · ∥∞ as |∥f∥∞ − ∥g∥∞| ≤ ∥f − g∥∞. By the continuous mapping theorem

KSn = sup
t∈R

|
√

n(Fn(t) − F (t))| → sup
t∈R

|GF (t)| = sup
t∈R

|Gλ(F (t))| = sup
u∈(0,1)

|Gλ(u)|,

where λ is the uniform distribution/measure on (0, 1), i.e., λ(x) = x. We can see that

Cov(Gλ(F (t)), Gλ(F (s))) =λ(F (t) ∧ F (s)) − λ(F (t))λ(F (s))
=F (t ∧ s) − F (t)F (s)
=Cov(GF (t), GF (s)).

3.2 Cramér-Von Mises test
The Cramér-Von Mises statistic is defined as

CVn = n

∫
(Fn(t) − F0(t))2dF0(t).

Under the null,
CVn = n

∫
(Fn(t) − F (t))2dF (t) =

∫
{
√

n(Fn(t) − F (t))}2dF (t).

The map f 7→
∫

f2(t)dF (t) is continuous w.r.t. ∥ · ∥∞. By the continuous mapping theorem

CVn
d→
∫

GF (t)2dF (t) =
∫

Gλ(F (t))2dF (t) =
∫

Gλ(u)2du.

3.3 Anderson-Darling test
Similar to the Cramér-Von Mises statistic, the Anderson-Darling statistic is another type of quadratic test
statistic. Assuming that F0(t) = t and letting Fn be the empirical cdf based on {pi}n

i=1, the Anderson-Darling
statistic is given by

ADn = n

∫ (Fn(t) − t)2

t(1 − t) dt.

It puts more weight on small and large p-values when compared with the Cramér-von Mises statistic. For
statistical intuition, one can think of the Anderson-Darling statistic as “averaging” the squared z-score over t.
This is because, under the global null, nFn(t) ∼ Bin(n, t) and thus Var(Fn(t)) = t(1 − t), so the integrand
(Fn(t) − t)2/{t(1 − t)} is similar to a squared z-score.

Exercise 3.1: Show that we can compute the Anderson-Darling statistic by using the following expression:

ADn = −n +
n∑

i=1

1 − 2i

n
log(p(i)) +

n∑
i=1

1 − 2i

n
log(1 − p(n+1−i)).
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To see this, note that

ADn =n

∫ (Fn(t) − t)2

t(1 − t) dt

=n

∫ p(1)

0

t2

t(1 − t)dt + n

n−1∑
i=1

∫ p(i+1)

p(i)

(i/n − t)2

t(1 − t) dt + n

∫ 1

p(n)

(1 − t)2

t(1 − t) dt

=n

∫ p(1)

0

t

1 − t
dt + n

n−1∑
i=1

∫ p(i+1)

p(i)

(i/n − t)2

t(1 − t) dt + n

∫ 1

p(n)

1 − t

t
dt

=n

{
− p(1) − log(1 − p(1)) +

n−1∑
i=1

[
i2

n2 log
p(i+1)(1 − p(i))
p(i)(1 − p(i+1))

− (p(i+1) − p(i)) +
(

1 − 2i

n

)
log

1 − p(i)

1 − p(i+1)

]

− (1 − p(n)) − log(p(n))
}

= − n + n

{
− log(1 − p(1)) +

n−1∑
i=1

[
i2

n2 log
p(i+1)(1 − p(i))
p(i)(1 − p(i+1))

+
(

1 − 2i

n

)
log

1 − p(i)

1 − p(i+1)

]
− log(p(n))

}

= − n +
n∑

i=1

1 − 2i

n
log(p(i)) +

n∑
i=1

1 − 2i

n
log(1 − p(n+1−i)).

Recall that Fisher’s test statistic is T = −2
∑n

i=1 log(pi), and Pearson’s test statistic is TPear = 2
∑n

i=1 log(1−
pi). The Anderson-Darling statistic is a combination of Fisher’s test and Pearson’s test. Compared to Fisher’s
and Pearson’s tests, the Anderson-Darling test assigns greater weight to the p-values that are in the bulk
because it reweights the p-values, depending on their rank, which Fisher and Pearson’s tests do not do. This
alleviates the high sensitivity to small p-values that Fisher’s test experiences.

4 Second-level/Higher-criticism test
As we have seen, the Kolmogorov-Smirnov test looks for the maximum distance between the empirical
CDF and its expected value under the global null hypothesis, while the Cramér-Von Mises test and the
Anderson-Darling test integrate the differences instead. We now combine the two approaches.

As discussed before, the quantity (Fn(t) − t)/
√

t(1 − t) in the Anderson-Darling test can be viewed as a
z-score. Instead of squaring this quantity and integrating over t as in the Anderson-Darling test, we take a
maximization over t, leading to the higher-criticism statistic:

HCn = sup
0<t≤t0

Fn(t) − t√
t(1 − t)/n

.

The higher-criticism statistic scans across the significance levels for departures from H0. Hence, a large value
of HCn indicates the significance of an overall body of tests.

4.1 Sparse mixture models
We study a sparse mixture model to understand the power of the higher-criticism statistic and compare it to
Bonferroni’s method. The results presented below are based on Donoho and Jin (2004, AOS). Previously, to
study the Bonferroni’s method and the L2 test, we consider n hypotheses

H0,i : Xi ∼ N(0, 1),
H1,i : Xi ∼ N(µi, 1), µi > 0.

We are interested in the case where there is a (small) fraction of non-null hypotheses. Rather than directly
assuming that there is some amount of nonzero means under the alternative, we can take a Bayesian viewpoint
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by assuming that

µi
i.i.d∼ (1 − ε)δ0 + εδµ,

where δµ denotes a point mass at µ. It thus leads to the Gaussian mixture model under the alternative:

H0,i : Xi ∼ N(0, 1),
H1,i : Xi ∼ (1 − ε)N(0, 1) + εN(µ, 1).

The expected number of non-nulls under the alternative is nε. If ε = 1/n, then the above would become the
“needle in a haystack” problem: on average, there would be one non-zero coordinate. The likelihood ratio
(LR) statistic is given by

Ln =
n∏

i=1

{
1 − ε + εeµXi−µ2/2

}
.

To analyze the LR test, let us consider

ε = εn = n−β , 1/2 < β < 1,

µ = µn =
√

2r log(n), 0 < r < 1,

where β controls the signal density while r specifies the signal strength. Further, define a threshold curve for
the parameter r

ρ(β) =
{

β − 1/2 1/2 < β < 3/4,

(1 −
√

1 − β)2 3/4 ≤ β ≤ 1.

It has been shown that (see the thesis by Jiashun Jin)

• If r > ρ(β), for the LR test,

P0(Type I error) + P1(Type II error) → 0.

• If r ≤ ρ(β), for any test,

lim inf
n

P0(Type I error) + P1(Type II error) ≥ 1.

In the above sense, the LR test is rate-optimal. However, it cannot be used in practice as µ and ε are
unknown in practice. Donoho and Jin (2004, AOS) showed that HCn achieves the same detection threshold
as the LR test does based on pi = P (Z > Xi) = 1 − Φ(Xi), where Z ∼ N(0, 1).

Comparison with Bonferroni’s method. Recall that the Bonferron’s method rejects the null when

max
i

Xi ≥ Φ−1(1 − α/n) =
√

2 log(n)(1 + o(1)).

It can be shown that (exercise)

max
i:non-null

Xi ≈
√

2r log(n) +
√

2(1 − β) log(n).

For the Bonferron’s test to be rejected, we need√
2r log(n) +

√
2(1 − β) log(n) >

√
2 log(n),

It thus implies that
√

r +
√

1 − β > 1 or equivalently r > (1 −
√

1 − β)2, which is optimal for 3/4 ≤ β ≤ 1.
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Exercise 3.2: Under the above setups, show that

max
i:non-null

Xi =
{√

2r log(n) +
√

2(1 − β) log(n)
}

(1 + o(1)).

Rejection threshold in the higher-criticism test. Let

Wn(t) = Fn(t) − t√
t(1 − t)/n

.

It can be shown that
sup

1/n≤t≤t0

W (t)√
2 log log(n)

p→ 1,

which suggests that the rejection threshold should be greater than
√

2 log log(n). For some ϵ > 0, if we reject
the null when HCn ≥

√
2(1 + ϵ) log log(n), Donoho and Jin (2004, AOS) showed that

P0(Type I error) + P1(Type II error) → 0.

Variations of higher-criticism test. One variation of the original higher-criticism test is the Berk-Jones
statistic, which standardizes the binomial counts using a log-likelihood ratio transformation rather than a
normal approximation. Specifically, it is defined as

BJn = max
1≤i≤n/2

D(p(i), i/n),

where D(a, b) = a log(a/b) + (1 − a) log((1 − a)/(1 − b)) for a, b ∈ [0, 1] is the Kullback-Leibler distance
between Ber(a) and Ber(b) distributions. Another variant is the average likelihood ratio test, defined as

ALR =
n∑

i=1
wi exp(nD(p(i), i/n)), wi = 1

2i log(n/3) .

5 Blessing of dependence
The above discussions assume that the test statistics from different hypotheses are independent of each
other. In reality, the tests could be dependent on each other, e.g., genes on the same biological pathway or
observations from neighboring locations. Below, we discuss how to derive the maximum/Bonferron’s test
statistic under dependence.

Let Xi = (xi,1, . . . , xi,p) be a sequence of i.i.d N(θ, Σ) random vectors with θ = (θ1, . . . , θp)⊤ and Σ =
(σi,j)p

i,j=1. Let Θk = {a ∈ Rp : ∥a∥0 = k} with ∥a∥0 being the number of nonzero components of a. Consider
the problem:

H0 : θ = 0 versus H1,k : θ ∈ Θk.

Let Γ = Σ−1 = (γi,j)p
i,j=1 be the precision matrix. Up to an additive constant and scaling, the LR test is

given by

LRn(k) = max
θ∈Θk

n∑
i=1

{
X⊤

i ΓXi − (Xi − θ)⊤Γ(Xi − θ)
}

.

Exercise 3.3: For S ⊆ 1, 2, . . . , p, let ΓS,S be the submatrix of Γ that contains the rows and columns in S.
Similarly, define ΓS,−S with the rows in S and the columns in {1, 2 . . . , p} \ S. Let X̄n = (x̄1,n, . . . , x̄p,n)⊤[=
n−1∑n

i=1 Xi and Z = (z1, . . . , zp)⊤ = ΓX̄n Show that

LRn(k) = n max
S:card(S)=k

Z⊤
S Γ−1

S,SZS
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where the maximization is over all the subset S ⊆ {1, 2, . . . , p} with cardinality k.

Maximum test. When k = 1, we have

LRn(1) = n max
1≤j≤p

|zj |2

γj,j
,

which has been considered by Cai et al. (2014, JRSSB) for the two-sample problem. Cai et al. (2014, JRSSB)
pointed out that the linear transformation ΓXi magnifies the signals and the number of the signals owing to
the dependence in the data.

Exercise 3.4: Run some simulations to show that LR(1) is more powerful than the usual maximum test
n max1≤j≤p |x̄j,n|2/σj,j under dependence (i.e., Γ ̸= Ip). In particular, generate i.i.d samples {X1, . . . , Xn}
from N(θ, Σ), where Σ = (σij) for σij = (0.5)|i−j| and θ is a sparse vector.
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