
STAT 689: Large-scale and high-dimensional statistical inference Fall 2024

Lecture 4

1 Multiple testing
1.1 Motivation
Multiple hypothesis testing is concerned with testing several hypotheses simultaneously. As a motivation, we
recall the following example from Lecture 1.

Suppose we have m1 prostate cancer patients and m0 normal controls from a microarray study. Each man’s
gene expression levels were measured on a panel of n genes (humans have roughly 20,000 genes), yielding a
measurement matrix of the size n× (m0 +m1). Let x(1)

ij (x(0)
ij ) be the activity of the ith gene for jth man in

the patient (control) group. We ask the question:

• for the ith gene, do the gene expression levels differ between the patient and control groups?

Formally, we can test the null hypotheses:

H0,i : E[x(1)
ij ] = E[x(0)

ij ], i = 1, 2, . . . , n.

For each gene, a two-sample t statistic ti can be computed comparing gene i’s expression levels for the m1
patients with those for the m0 controls. Under the Gaussian assumption on the samples and H0,i, ti follows
the t distribution with m0 +m1 − 2 degrees of freedom. Therefore, the p-value can be computed as

pi = P (|Tm0+m1−2| > |ti|),

where Tm0+m1−2 follows the t distribution with m0 +m1 − 2 degrees of freedom.

In general, let us assume there are n hypotheses H0,1, . . . ,H0,n to be tested. For the ith hypothesis H0,i,
we can calculate a p-value pi. We assume that the p-values are uniformly distributed over [0, 1] when the
associated hypothesis is null.

1.2 Potential outcomes
There are four types of outcomes in multiple testing, as illustrated in Table 1.2. The rows indicate the true
state of the world with respect to the null hypotheses. On the other hand, the columns indicate acceptance
and rejection of the null hypotheses. The random variables U and V indicate the number of correctly
accepted and falsely rejected hypotheses, i.e., the number of true negatives and false positives (often called
false discoveries). The random variables T and S indicate the number of false negatives and true positives.
The number of hypotheses under the null is denoted by n0. The four random variables U , V , T , and S are
unobserved. The random variable R indicates the total number of rejections by a given multiple testing
procedure and is observed. Note that the quantities of primary interest are the number of false discoveries V
and the number of discoveries R. It is desired to maximize the number of discoveries subject to the constraint
that the number of false discoveries remains low.

H0 accepted H0 rejected Total
H0 true U V n0
H0 false T S n− n0

n−R R n

Table 1: Potential outcomes for testing multiple hypotheses.

1



1.3 Familywise error rate
Familywise error rate (FWER) is the probability that a multiple hypothesis testing procedure makes at least
one false rejection, i.e.,

FWER = P(V ≥ 1).
A procedure controls the FWER at level α in the weak sense if the FWER is less than or equal to α under
the global null. In contrast, a procedure controls the FWER at level α in a strong sense if the FWER is less
than or equal to α under all configurations of true and false hypotheses. One variation of this notion of error
control is the k-FWER defined as

k-FWER = P(V ≥ k).

2 FWER controlling procedures
In this section, we introduce several classical FWER controlling procedures.

2.1 Bonferron’s method and Šidák’s procedure
As discussed before, Bonferron’s method rejects H0,i if pi ≤ α/n. Bonferroni’s method controls FWER at
level α in a strong sense. To see this, note that

FWER =P (V ≥ 1) ≤ E[V ]

=
∑

i:H0,i is true
P(pi ≤ α/n)

=αn0

n
≤α,

where the first inequality is due to the Markov inequality.

Šidák’s procedure refines Bonferron’s method when the p-values are independent. Specifically, it rejects H0,i

whenever pi ≤ 1 − (1 − α)1/n. Notice that under independence among the p-values,

P (V ≥ 1) =1 − P (V = 0) = 1 −
∏

i:H0,i is true
P (pi > 1 − (1 − α)1/n)

=1 − (1 − α)n0/n

≤1 − (1 − α) = α.

2.2 Weak control
Recall that a procedure controls the FWER at level α in the weak sense if the FWER is less than or equal to
α under the global null. To gain some intuition, consider the following two-step multiple testing procedure
suggested by Fisher:

• Step 1. Run a procedure to test the global null H0 = ∩n
i=1H0,i.

• Step 2. When the global null is rejected, reject the ith hypothesis if pi ≤ α.

This procedure controls the FWER only in a weak sense, i.e., it controls the FWER only when all null
hypotheses are null. To see this, observe that if all null hypotheses are true, then the procedure reaches Step
2 with probability at most α, and, therefore, the chance that a single false discovery is made is at most α.

By contrast, it does not control the FWER in a strong sense, i.e., under any configurations of null and
non-null hypotheses when some hypotheses are non-null. In particular, suppose there is one very strong
signal, say, with an extremely small p-value. Then, if all other hypotheses are null, the procedure will reach
the second step with very high probability, and for the second step, there will be, on average, about n0α
false rejections. This illustrates how global testing and multiple testing with control of the FWER are very
different procedures.
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2.3 Holm’s procedure
Holm’s procedure provides a strict improvement over Bonferoni’s method. Consider the ordered p-values
p(1) ≤ p(2) ≤ · · · ≤ p(n) and let H(i) be the hypothesis associated with p(i). Holm’s Procedure is a “step
down” multiple testing procedure.

• Step 1. If p(1) ≤ α/n, reject H(1) and go to step 2. Otherwise, accept H(1), . . . ,H(n).

• Step 2. If p(2) ≤ α/(n− 1), reject H(2) and go to step 3. Otherwise, accept H(2), . . . ,H(n).

• Step n. If p(n) ≤ α, reject H(n) and go to step 3. Otherwise, accept H(n).

In other words, the procedure examines p(i) from i = 1 and stops when it encounters the first i such that
p(i) > α/(n− i+ 1), rejecting all H(j) with j = 1, 2, . . . , i− 1. It is important to note that Holm’s Procedure
is less conservative than Bonferroni’s method, as the threshold becomes more “liberal” as larger p-values are
considered.

Theorem. Holm’s procedure controls the FWER at level α in a strong sense.

Proof. Let N0 be the set of indices corresponding to the hypotheses under the null with n0 elements.

We first show that if we falsely reject some true hypotheses, then there exists a true hypothesis H(l) such
that p(l) ≤ α/n0. In this case, n0 ≥ 1. Let H(l) be the first true null hypothesis being rejected. Then,
H(1), . . . ,H(l−1) are all correctly rejected and p(i) ≤ α/(n− i+ 1) for i = 1, 2, . . . , l. As l − 1 ≤ n− n0, we
have n0 ≤ n− l + 1, which implies that p(l) ≤ α/(n− l + 1) ≤ α/n0.

Based on the above observation, we get

P(V ≥ 1) ≤P

 ⋃
H(l) is true

{
p(l) ≤ α/n0

}
=P

( ⋃
i∈N0

{pi ≤ α/n0}

)
≤n0α

n0
= α.

2.4 Benjamini-Hochberg procedure
The Benjamini-Hochberg (BH) procedure works as follows.

• Given the desired level α, find the largest k such that p(k) ≤ αk/n.

• Reject the hypotheses H(1), . . . ,H(k).

Under the global null, the procedure will make one or more than one rejection only when

Tn = min
1≤i≤n

np(i)

i
≤ α.

This is essentially the Simes test, which has been shown to control the Type I error at level α. The BH
procedure does not control the FWER strongly (Why?), but we shall revisit the BH procedure later on to
show that it controls the so-called false discovery rate (FDR).

3 Closure principle
We introduce the closure principle and its applications to global testing procedures. The section concludes by
proving that closed tests control the FWER strongly.

We follow the above setup by assuming that there is a set of hypotheses {Hi}n
i=1 and for each hypothesise

Hi, we observe a p-value pi which is uniformly distributed over [0, 1] under the null. Let [n] = {1, 2, . . . , n}.
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For an index set I ⊆ [n], we define

HI =
⋂
i∈I

Hi.

and the closure of {Hi}n
i=1 as

C = {HI : I ⊆ [n], I ̸= ∅} .

As an example, consider n = 4. The closure is given by

H1234

H123, H124, H134, H234

H12, H13, H14, H23, H24, H34

H1, H2, H3, H4

For each I, consider a valid level α test ψI for testing HI , i.e., we reject HI when ψI = 1 and

P (ψI = 1|HI) ≤ α.

The tests ψI may be constructed using any global testing procedures such as Bonferroni, Simes, L2, etc.

The closure procedure. Reject HI if and only if for all J ⊇ I, HJ is rejected at level α. Let TI = minJ⊇I ψJ .
Then, we reject HI if and only if TI = 1.

Consider the example above with n = 4 and assume that the underlined hypotheses are rejected at the level
α. According to the closure principle, among {Hi}4

i=1, only H1 is rejected.

Theorem. The closure principle controls the FWER strongly.

Proof. Let N0 ⊆ [n] be the index set of the true nulls. Suppose N0 ≠ ∅. Otherwise, there will be no false
rejection. Define A = {the closure principle makes at least one false rejection} and B = {HN0 is rejected}.
Suppose j ∈ N0 and Hj is rejected. By the closure principle, HN0 must be rejected and thus A ⊂ B. We have

FWER = P (A) ≤ P (B) ≤ α.

Therefore, the closure principle controls the FWER at level α regardless of the underlying configuration.

3.1 Closed testing procedure: closing Bonferroni
If we use Bonferroni’s procedure to test HI , then we reject HI (i.e., ψI = 1) if

min
i∈I

pi ≤ α

|I|
,

where pi is the p-value for testing Hi and |I| denotes the size of I.

3.2 Holm’s procedure as a closed testing procedure
Holm’s procedure can be viewed as a closed testing procedure with the Bonferroni correction applied locally
on each of the intersections of null hypotheses.

Holm’s procedure is a shortcut procedure since it makes n or fewer comparisons, while the number of all
intersections of null hypotheses to be tested is of order 2n.

In Holm’s procedure, we first test H(1). If it is not rejected (i.e., p(1) > α/n), then ∩n
i=1Hi is not rejected

using Bonferroni’s method. Therefore, the closure principle does not reject any hypothesis. If p(1) ≤ α/n,
then H(1) is rejected in Holm’s procedure. On the other hand, any hypothesis HI containing H(1) has its

4



smallest p-value being p(1) and hence is rejected using Bonferroni’s method. It thus implies that H(1) is also
rejected in the closed testing procedure.

If H(1) is rejected, we now consider H(2). If p(2) > α/(n−1), then H(2) is not rejected in Holm’s procedure. We
note that HI = ∩n

i=1Hi \H(1) has its smallest p-value being p(2). Thus, HI is not rejected using Bonferroni’s
method, which implies that none of the other hypotheses will be rejected in the closed testing procedure.
If p(2) ≤ α/(n− 1), H(2) is rejected in Holm’s procedure. Any hypothesis HI containing H(2) will also be
rejected using Bonferroni’s method (Why?). Therefore, H(2) is rejected in the closed testing procedure.

The same rationale applies to H(i) for any 1 ≤ i ≤ n. The argument relies on the following key observation.
Suppose H(1), . . . ,H(j−1) have already been rejected, i.e., p(j−1) ≤ α/(n− j + 2). Let

HIj = ∩n
i=1Hi \ (∩j−1

i=1H(i)).

Then we have

ψIj
= 1 iff ψI = 1 for any I with (j) ∈ I

and ψIj
= 1 iff p(j) ≤ α/(n− j + 1) using Bonferroni’s method

The above argument provides an alternative way of showing that Holm’s procedure controls the FWER in
the strong sense.

3.3 Closed testing procedure: closing Simes
Recall that the Simes procedure rejects the global null ∩n

i=1Hi whenever

p(i) ≤ αi

n

for some i. If we define
Tn = min

1≤i≤n

(np(i)

i

)
,

Simes test rejects the null if Tn ≤ α.

We now apply the Simes test statistic in the closed testing procedure. Specifically, to test HI , we define

ψI = 1
{

min
1≤i≤n

( |I|p(i,I)

i

)
≤ α

}
where p(i,I) is the ith smallest p-value among {pi : i ∈ I}. Under independence among the p-values, the
Simes procedure controls the type I error at level α. Thus, the closure of the Simes procedure will control
FWER at level α in the strong sense. Since Simes is strictly more powerful than Bonferroni, the closure of
Simes will be strictly more powerful than Holm’s procedure (the closure of Bonferroni). The closure of Simes
is called Hommel’s procedure; see Hommel (1988, Biometrika) for more details.

3.4 Hochberg’s procedure
We discuss Hochberg’s procedure, which is more conservative than Hommel’s procedure but still more powerful
than Holm’s procedure. In summary, we have

Holm’s procedure ≺ Hochberg’s procedure ≺ Hommel’s procedure,

where A ≺ B means procedure A is more conservative than procedure B.

Hochberg’s procedure. Given the ordered p-values p(1) ≤ p(2) ≤ · · · p(n) and the corresponding hypotheses
H(1), . . . ,H(n), we reject H(j) if there exists j′ ≥ j such that

p(j′) ≤ α

n− j′ + 1 .
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We know that the closure of Simes controls FWER at level α under independence. Thus, to conclude that
Hochberg’s procedure also controls FWER at level α, it suffices to show whenever Hochberg’s procedure
rejects a hypothesis, then the closure of Simes also rejects.

Proof. Suppose H(j) is rejected in the Hochberg’s procedure. Then there exists j′ ≥ j such that

p(j′) ≤ α

n− j′ + 1 .

Now, we show that for any I with (j) ∈ I, HI is rejected by the Simes test. Consider a set I with size h.
Define the “worse-case” set

Kh =
{

{(j), (n), (n− 1), . . . , (n− h+ 2)} if j ≤ n− h+ 1,
{(n), (n− 1), . . . , (n− h+ 1)} if j > n− h+ 1.

We note that (j) ∈ Kh and |Kh| = h = |I|. If the Simes procedure rejects Kh, it will also reject HI . This is
because the p-values indexed in Kh are larger than the p-values indexed in I. Since the thresholds in the
Simes procedure only depend on the size of the set I, this shows that ψKh

= 1 implies ψI = 1. Therefore, if
ψKh

= 1, (j) will be rejected.

Now we show that ψKh
= 1. First, suppose that j ≤ j′ ≤ n− h+ 1. Then p(j) is the smallest p-value in Kh,

and thus

p(1,Kh) = p(j) ≤ p(j′) ≤ α

n− j′ + 1 ≤ α

h
.

It suggests that ψKh
= 1. Now if j′ ≥ n− h+ 2, then (j′) ∈ Kh. We note that Kh contains h p-values and

the n− j′ p-values p(n), p(n−1), . . . , p(j′+1) are all in Kh and are all larger than p(j′). We must have

p(h−n+j′,Kh) ≤ p(j′) ≤ α

n− j′ + 1 ≤ (h− n+ j′)α
h

.

To see why the last inequality holds, let a = n− j′ + 1 and b = h− n+ j′. It suffices to show that h ≤ ab.
But note that a+ b− 1 = h and thus ab− h = (a− 1)(b− 1). Since a and b are both integers greater than or
equal to zero, we must have ab− h = (a− 1)(b− 1) ≥ 0 and hence ab ≥ h.

4 Step-down versus step-up procedures
Both Holm’s procedure and Hochberg’s procedure compare p(j) with the threshold α/(n− j + 1). However,

• Holm’s procedure scans forward and stops at the first p-value that is larger than the corresponding
threshold. This is called a step-down procedure.

• Hochberg’s procedure scans backward and stops at the first p-value that is smaller than the corresponding
threshold. Likewise, this is called a step-up procedure.

The names step-up and step-down may seem counter-intuitive and presented in the wrong order. For step-up
procedures, we start at the largest p-value and decrease, but for step-down procedures, we start at the
smallest p-value and increase. The names make sense if we think about the procedures in terms of z-scores.
That is, if our p-values are of the form pi = P (Z > zi) where Z ∼ N(0, 1) and zi is the z-score for Hi, then
the smallest p-values correspond to the largest z-score. In this case, a step-up procedure would start at the
smallest z-score and increase. A step-down procedure would start at the largest z-score and decrease.
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