
STAT 689: Large-scale and high-dimensional statistical inference Fall 2024

Lecture 5

1 Graphical procedures
Bonferroni, Holm’s, and Hochberg’s procedures are all symmetric procedures. This means that if we change
the p-values between the hypotheses, then the rejected hypotheses will also change accordingly. This approach
is useful when we have no prior knowledge about the hypotheses being tested, like in a genome-wide association
study (GWAS) where we do not know which genes are most likely to be associated with a trait.

There are situations where the hypotheses are asymmetric, and we want to incorporate this asymmetry
into our procedures. A typical example is in clinical trials, which often have multiple stages. A significant
result in the first stage is typically more important than in later stages. It is usually necessary for FDA
approval, regardless of the significance and effect sizes of later stages. Another source of asymmetry may
come from prior knowledge about effect sizes. If one alternative is expected to have a large effect size, then
we may prioritize testing that hypothesis. Graphical procedures are a family of procedures that use various
types of prior knowledge to distribute the “α-budget” of the procedure unevenly and adaptively across the n
hypotheses.

We provide two examples before giving a definition of the general graphical procedures.

1.1 Sequential testing
Suppose we can order the hypotheses in a way such that H1 is the “most promising” hypothesis, the one
that is mostly likely to be non-null, and H2 is the second “most promising” hypothesis. In this case, we can
perform the following sequential test

• Step 1. For j = 1, compare pj with α.

• Step 2. If pj ≤ α, set j = j + 1 and move to step 1. Otherwise, terminate and reject H1, . . . ,Hj−1.

We next show that this procedure controls the FWER strongly, which means that the FWER is controlled
under all possible arrangements of null and alternative hypotheses. This differs from weak control of the
FWER, where the FWER is only controlled under the global null.

Theorem. The sequential test controls the FWER strongly.

Proof. Let Hj be the first true null being rejected (which means Hj is the first true null on the ordered list).
Then, we have

FWER ≤P(reject Hj)
≤P(p1 ≤ α, . . . , pj−1 ≤ α, pj ≤ α)
≤P(pj ≤ α) = α.

It important that the order of the hypotheses was chosen in advance and independently of the p-values.

1.2 Fallback procedures
Consider the above sequential setting with α = 0.05 and

p1 = 0.01, p2 = 0.02, p3 = 0.09, p4 = 0.01.

Here H1, H2, H4 are non-null and H3 is null. As p3 > 0.05, we fail to reject H4. To overcome this issue, we
consider a procedure that considers each hypothesis.
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Like the sequential test, suppose we are given an ordered list of hypothesis, say H1, . . . ,Hn, where the
order is independent of the p-values. Unlike fixed sequence testing, a set of thresholds α1, . . . , αn such that∑n

i=1 αi = α must also be fixed in advance. Once the p-values have been calculated, the fallback procedure
does the following:

• We first compare p1 with α1. If p1 ≤ α1, then we reject H1 and set α2 to α1 + α2. Otherwise, we leave
α2 unchanged.

• We compare p2 with α2. If p2 ≤ α2, then we reject H2 and set α3 to α2 + α3. Otherwise, we leave α3
unchanged.

• In general, suppose we have tested H1, . . . ,Hj−1 and we want to examine Hj . If pj ≤ αj , then we
reject Hj and set αj+1 to αj + αj+1. Otherwise, we leave αj+1 unchanged.

Note that the sequential test is a fallback procedure with α1 = α and αi = 0 for i > 1. We next show that
the fallback procedure controls the FWER strongly.

Theorem. The fallback procedure controls the FWER strongly.

Proof. Let 1 ≤ j1 < j2 < · · · < jn0 ≤ n be the indices of the true nulls. We note that

FWER =P (Hjk
is rejected for some k = 1, 2, . . . , n0)

=P (Hj1 is rejected) + P (Hj1 is not rejected and Hj2 is rejected)
+ · · ·+ P

(
Hjk

is not rejected for all k < n0 and Hjn0
is rejected

)
≤P(pj1 ≤ α1 + · · ·+ αj1) + P(p2 ≤ αj1+1 + · · ·αj2)

+ · · ·+ P(pjn0
≤ αjn0−1+1 + · · ·+ αjn0

)

=
n∑

i=1
αi = α.

We have a couple of remarks about the above proof.

• As with the sequential test, the important assumption was that the order of hypotheses and the
thresholds αi’s were specified independently of the p-values.

• The proof makes no assumptions about the dependencies between the p-values.

• The proof is similar to the proof that closed procedures control the FWER. In both proofs, we consider
the subset of {1, 2, . . . , n} containing the true nulls.

1.3 General graphical procedures
To specify a graphical procedure, the following must be given

• an error level α ∈ (0, 1);

• a set of thresholds α1, . . . , αn such that αi ≥ 0 and
∑n

i=1 αi ≤ α;

• A weighted directed graph (wij)n
i,j=1 with wij ∈ [0, 1], wii = 0 and

∑n
j=1 wij ≤ 1 for all i, j = 1, 2, . . . , n.

We can associate each vertice with a hypothesis Hi. The edge between Hi and Hj has a weight wij . When
wij = 0, we interpret this as an absence of an edge between Hi and Hj . Thus, the condition wii means we do
not allow self-loop. Cycles of length greater than one are allowed.

Given the above inputs, the graphical procedure is an iterative procedure that does the following. At each
time step, we have a set of current hypotheses {Hi : i ∈ I}. This collection is the set of hypotheses we are
yet to reject. First, we check if there exists an index i ∈ I with pi ≤ αi. If no such index exists, then the
procedure terminates. If such an i ∈ I does exist, then we reject Hi and perform the following update to our

2



set of hypotheses, thresholds, and

I ←− I \ {i},
αj ←− αj + αiwij

wjk ←−

{
wjk+wjiwik

1−wjiwij
if j ̸= k,

0 if j = k.

We then repeat this procedure with the new set of hypotheses.

When we reject Hi, the budget αi is transferred to the other hypotheses based on the weights wij . The
updated weights can be given the following interpretation. The previous wij can be roughly thought of as the
transition probabilities for a random walk on {Hj : j ∈ I}. Once we reject Hi, we construct a new random
walk on {Hj : j ∈ I \ {i}}. In the new random walk, we can either transition from Hj to Hk directly or
transition via the deleted state Hi. This gives the numerator wjk + wjiwik. The denominator comes because
we do not allow for self-loop. Thus, we must correct for the possibility of a transition from Hj back to Hj via
Hi. Many of the procedures we have seen so far fall under the umbrella of graphical procedures.

The Bonferroni method is a graphical procedure with αi = α/n and wij = 0 for all i and j.

Exercise 5.1: Show that the Holm’s procedure is also a graphical procedure with αi = α/n and wij = 1/(n−1)
for all i and j with i ̸= j.

The sequential procedure is a graphical procedure with α1 = α, αi = 0 for i = 2, . . . , n and wi,i+1 = 1 for
i = 1, . . . , n− 1 and wij = 0 for all other i, j. Likewise, the fallback procedure is a graphical procedure with
the same weights as the fixed sequence procedure but with arbitrary thresholds.

Theorem. Given any thresholds α1, . . . , αn and weights {wij}n
i,j=1, the corresponding graphical procedure

described above controls the FWER strongly under arbitrary dependencies between the p-values. Furthermore,
the set of rejected hypotheses R does not depend on the order in which the hypotheses are rejected.

Proof. The full proof of this theorem is in Appendix A of Bretz et al. (2009, Statistics in Medicine). Theorem
3 follows by showing that every graphical procedure is the closure of a weighted Bonferroni procedure.

One limitation of graphical procedures is their lack of flexibility. A choice of αi’s and wij ’s that works well in
one situation may not work well in another. It is still an unresolved issue how to select the best thresholds
and weights in a given scenario.

1.4 Weighted Bonferroni procedures and consonance
This section shows that graphical procedures are the closures of weighted Bonferroni tests. The FWER
control theorem above will thus be a consequence of this connection. To this end, let us first define the
weighted Bonferroni procedure.

Definition. Given α1, . . . , αn ≥ 0 with
∑n

i=1 αi ≤ α, the weighted Bonferroni test rejects the global null if
pi ≤ αi for some i.

Using the union bound, it is straightforward to show that the weighted Bonferroni method controls the Type
I error at level α for testing the global null. Bonferroni’s test is the special case when αi = α/n for every i.

Since we are interested in closing such tests, we need to have thresholds αi(I) for every intersection hypothesis
HI = ∩i∈IHi. Thus, suppose that we have thresholds αi(I) for i ∈ I and every I ⊆ {1, 2, . . . , n} such that∑

i∈I αi(I) ≤ α. Then, based on the weighted Bonferroni, we reject HI if there exists an i ∈ I such that
pi ≤ αi(I). In other words,

ψI = max {I{pi ≤ αi(I)} : i ∈ I} .

We impose a relationship between αi(I) and αi(J) for i ∈ J ⊆ I. If i ∈ J ⊆ I, then pi is a p-value that will
be used in testing HI and HJ . The set I is greater than the set J . This means that when we test HI , we have
a larger multiple testing problem than when we test HJ . Thus, to control the probability of falsely rejecting
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a null hypothesis, the threshold αi(I) should be smaller than αi(J). This property is called monotonicity and
can be written as

αi(I) ≤ αi(J), i ∈ J ⊆ I.

Now suppose the thresholds αi(I) with I ⊆ {1, 2, . . . , n} and i ∈ I satisfy the monotonicity. Then for all
non-empty I, if HI is rejected, then there exists i ∈ I such that for all J such that i ∈ J ⊆ I, HJ is also
rejected. To see this, note that if HI is rejected, there exists an i ∈ I such that pi ≤ αi(I). As αi(I) ≤ αi(J),
we must have pi ≤ αi(J) and hence HJ is rejected.

The closure of the weighted Bonferroni tests satisfies a property named consonance.

Definition. Let {ψI} be a family of tests for testing {HI : I ⊆ {1, 2, . . . , n}}. The family {ψI} is consonant
if for all I ⊆ {1, 2, . . . , n} if ψI = 1, then there exists i ∈ I such that for all J with i ∈ J ⊆ I, ψJ = 1.

Exercise 5.2: Show that closing Bonferroni is always consonant.

Without consonance, one could be in a situation where the global null has been rejected, but none of the
individual nulls have been rejected.

Example. Suppose that for i = 1, 2, we have Xi ∼ N(θi, 1) independently. Let Hi : θi = 0 for i = 1, 2. We
know that

X2
1 +X2

2 ∼ χ2
2 under global null,

X2
i ∼ χ2

1 under Hi.

Based on the above observations, we propose to reject the global null when X2
1 + X2

2 > χ2
2(1 − α) and

Hi when X2
i > χ2

1(1 − α). We could then close the above tests to obtain a procedure that controls the
FWER at α. However, the result tests will be nonconsonant as 2χ2

1(1− α) > χ2
2(1− α) (e.g., for α = 0.05,

χ2
1(0.95) = 3.84 and χ2

2(0.95) = 5.99). Thus, one can construct a scenario where X2
1 , X

2
2 < χ2

1(1− α) and
X2

1 +X2
2 ≥ χ2

2(1− α). This would lead to a scenario where the global null is rejected, but neither H1 nor H2
is rejected.

One solution to ensure consonance is to consider the following procedure:

reject H12 if max{X2
1 , X

2
2} > m(1− α),

reject Hi if X2
i > χ2

1(1− α),

where m(1 − α) is the 1 − α quantile of the maximum of two independent χ2
1 random variables. As

m(1− α) > χ2
1(1− α), if the global null is rejected, H1 or H2 has to be rejected, and hence the procedure is

consonant.

The algorithm below for the closed weight Bonferroni avoids the exponential complexity of the closure
principle by only computing the thresholds αi(I) for a small number of subsets I.

1.5 Graphical procedures as weighted Bonferroni procedures
We now show that graphical procedures can be described as the closure of a weighted Bonferroni procedure.
Suppose we are given {αi} and {wij}. We will define the local thresholds αi(I) and local weights wij(I) by
backward induction on the size of I. When J = {1, 2, . . . , n}, we simply set αi(J) = αi and wij(J) = wij .
Now consider I = J \ {i} for i ∈ J . For any j, k ∈ I, we define

αj(I) = αj(J) + αi(J)wij(J),

wjk(I) =
{

wjk(J)+wji(J)wik(J)
1−wji(J)wij(J) if j ̸= k,

0 if j = k.

In Appendix A of Appendix A of Bretz et al. (2009, Statistics in Medicine), it is shown that the above
definition does not depend on the order in which indices are removed from {1, 2, . . . , n} to produce I. By the
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Algorithm 1 Closed weighted Bonferroni procedure
Require: A function that can compute αi(I) for any I ⊆ [n] and i ∈ I, which satisfies the monotonicity.
R ←− ∅
I ←− {1, 2, . . . , n}
for j ∈ I do

Compute αj(I)
end for
while There exists i ∈ I with pi ≤ αi(I) do

Find i such that pi ≤ αi(I)
R ←− R∪ {i}
I ←− I \ {i}
for j ∈ I do

Compute αj(I)
end for

end while
return R.

construction, it is clear that

αi(J) ≤ αi(I), I ⊂ J.

Therefore, if HJ is rejected, there exists an i ∈ J such that pi ≤ αi(J). As αi(J) ≤ αi(I), we must have
pi ≤ αi(I) for all i ∈ I ⊂ J . Therefore, Hi will be rejected by the closure principle.

Since closure procedures always control the FWER, we can conclude that graphical procedures also control
the FWER strongly.
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