
STAT 689: Large-scale and high-dimensional statistical inference Fall 2024

Lecture 6

1 False discovery rate
Recall that there are four types of outcomes in multiple testing, as illustrated in Table 1. The rows indicate
the true state of the world with respect to the null hypotheses. On the other hand, the columns indicate
acceptance and rejection of the null hypotheses. The random variables U and V indicate the number of
correctly accepted and falsely rejected hypotheses, i.e., the number of true negatives and false positives
(often called false discoveries). The random variables T and S indicate the number of false negatives and
true positives. The number of hypotheses under the null is denoted by n0. The four random variables U ,
V , T , and S are unobserved. The random variable R indicates the total number of rejections by a given
multiple testing procedure and is observed. Note that the quantities of primary interest are the number of
false discoveries V and the number of discoveries R. It is desired to maximize the number of discoveries
subject to the constraint that the number of false discoveries remains low.

H0 accepted H0 rejected Total
H0 true U V n0
H0 false T S n− n0

n−R R n

Table 1: Potential outcomes for testing multiple hypotheses.

1.1 Definition
In many applications (such as GWAS), controlling the FWER will result in very few discoveries. This
created a need within many scientific communities to abandon FWER for other ways to highlight and rank
in publications those variables showing marked effects across individuals or treatments that would otherwise
be dismissed as non-significant after standard FWER correction for multiple tests.

The false discovery rate (FDR) is an alternative error measure proposed by Benjamini and Hochberg (1995)
that leads to more discoveries. It is particularly useful when researchers are looking for “discoveries” that
will give them follow-up work (E.g., detecting promising genes for follow-up studies) and are interested in
controlling the proportion of “false leads” they are willing to accept.

To introduce FDR, we first define the so-called false discovery proportion (FDP):

FDP = V

1 ∨R
,

where we define a ∨ b = max{a, b}. Note that when R = 0, FDP is equal to zero. The FDR is defined as

FDR = E[FDP].

One important observation and a common objection to FDR is that controlling the FDR gives us security
on average across many repetitions of an experiment, but unlike FWER, FDR does not guarantee anything
about a particular study. So, we cannot make a statement about the FDP for the study. Hence, it is useful
to think about FDR in the sense of the experiments done by the scientific community as a whole as opposed
to each single experiment.
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1.2 Comparison with FWER
FDR is also a weaker notion of control than FWER, which makes it a useful compromise in modern settings
when the number of hypotheses is large enough that FWER control can be too stringent. We argue that

1{V ≥ 1} ≥ FDP, (1)

which implies that FDR ≤ FWER. To show (1), we note that when V = 0, FDP = 0. On the other hand, if
V ≥ 1, FDP is less or equal to one. Therefore, controlling the FDR is more liberal, leading to more discoveries
compared to FWER control.

1.3 Benjamini-Hochberg procedure
The Benjamini-Hochberg procedure is perhaps the most commonly used multiple-testing procedure for
controlling the FDR. Let p(1) ≤ p(2) ≤ · · · ≤ p(n). The BH procedure finds the largest i (denoted by i0) such
that

p(i) ≤ iα

n

and rejects H(1), . . . ,H(i0).

Recall that in the Hochberg’s procedure, we find the largest i (denoted by j0) such that

p(i) ≤ α

n− i+ 1

and reject H(1), . . . ,H(j0). We now compare the two thresholds iα/n and α/(n − i + 1) for p(i). Suppose
i = βn. We have

iα

n
= βα

and
α

n− i+ 1 = α

n(1 − β) + 1 .

The threshold for Hochberg’s procedure can be much more conservative than that of the BH procedure.

Adjusted p-value. Similar to the Bonferroni correction on p-values (where we set p̃i = npi and compare p̃i

with α to decide if Hi should be rejected), we can define the BH-adjusted p-value for each hypothesis. Note
that H(i) will be rejected in the BH procedure, if there exists some j ≥ i such that

np(j)

j
≤ α.

This motivates us to define the adjusted p-value

p̃(i) = min
(

1,min
j≥i

np(j)

j

)
.

It is not hard to see that H(i) is rejected in the BH procedure if and only if p̃(i) ≤ α.

1.4 An alternative formulation for the BH procedure
The BH procedure is equivalent to rejecting all Hi with pi ≤ T , where T is defined as

T = sup
{

0 < t ≤ 1: nt

1 ∨R(t) ≤ α

}
,
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with R(t) =
∑n

i=1 1{pi ≤ t} being the number of rejections given the threshold t. Let N0 be the set of true
nulls. Note that by the law of large numbers

1
|N0|

∑
i∈N0

1{pi ≤ t} ≈ t

which implies that ∑
i∈N0

1{pi ≤ t} ≈ t|N0| ≤ tn.

Thus, nt can be viewed as a conservative estimate for the number of false discoveries given the threshold t.

Exercise 6.1: Show that the two descriptions of the BH procedure in Sections 1.3 and 1.4 are equivalent.

1.5 FDR control theory
Theorem. Suppose the null p-values are mutually independent and are independent of the alternative
p-values. The BH procedure controls the FDR at level n0α/n, where n0 is the number of true nulls.

Proof. The proof is based on the so-called leave-one-out argument. Let Vi = 1{Hi is rejected}. We have

FDP(T ) =
∑

i∈N0

Vi

R(T ) ∨ 1 =
∑

i∈N0

Vi

nT

nT

R(T ) ∨ 1 ≤ α
∑

i∈N0

Vi

nT
.

Therefore, we need to bound

E

[ ∑
i∈N0

Vi

nT

]
from above. Observing that, for a given R, T = T (R) is a deterministic function of R, we have:

E

[ ∑
i∈N0

Vi

nT

]
=

∑
i∈N0

n∑
k=1

E
[
Vi1{R = k}
nT (k)

]
=

∑
i∈N0

n∑
k=1

E
[
Vi1{R(pi → 0) = k}

nT (k)

]
,

where R(pi → 0) is the number of rejections obtained by replacing the p-value pi with 0. To clarify the
second equality, note that if Vi = 0, the equation is trivially true. When Vi = 1, setting pi to 0 does not
change the number of rejections (Why?). By direct calculation,

E

[ ∑
i∈N0

Vi

nT

]
=

∑
i∈N0

n∑
k=1

1
nT (k)E[1{pi ≤ T (k)}]E[1{R(pi → 0) = k}]

≤
∑

i∈N0

n∑
k=1

T (k)
nT (k)E[1{R(pi → 0) = k}]

≤ 1
n

∑
i∈N0

n∑
k=1

E[1{R(pi → 0) = k}]

≤ n0

n
,

where n0 = |N0|. Hence, FDR = E[FDP] ≤ n0α/n.

1.6 BH procedure based on z-scores
Let z = (z1, . . . , zn) be a set of z-statistics with E[zi] = µi. We are interested in testing the two-sided
hypothesis:

H0,i : µi = 0 versus Ha,i : µi ̸= 0, i = 1, 2, . . . , n.
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Define the FDP estimate as

FDP(t) = 2n(1 − Φ(t))
1 ∨

∑n
i=1 1{|zi| ≥ t}

.

The BH procedure works as follows: (1) Find the smallest t∗ ≥ 0 such that FDP(t∗) ≤ α; (2) Reject all the
hypotheses such that |zi| ≥ t∗. The above procedure is exactly equivalent to the BH procedure based on the
two-sided p-values pi = 2(1 − Φ(|zi|)) (Why?).

1.7 Generalized BH procedure
Exercise 6.2: Consider the following generalized version of the BH procedure. Let ψi : R → R be a strictly
increasing function and can differ for each i. Define the threshold

T = sup
{

0 < t ≤ 1: ng(t)
1 ∨R(t) ≤ α

}
,

where g is a strictly increasing function and R(t) =
∑n

i=1 1{ψi(pi) ≤ t}. We reject Hi whenever ψi(pi) ≤ T.
Using the leave-one-out technique, show that the above procedure controls the FDR at the level Cα, where

C =
∑

i∈N0

sup
t∈Cα

ψ−1
i (t)
ng(t) , Cα = {0 < t ≤ 1 : g(t) ≤ α} .

As a special case of Exercise 6.2, we consider the so-called weighted BH procedure, which was originally
proposed by Genovese, Roeder, and Wasserman (2006, Biometrika). Let wi be a sequence of positive weights
such that

∑n
i=1 wi = n. Define ψi(p) = p/wi. We reject Hi if

ψi(pi) = pi/wi ≤ T

for the data-dependent threshold T . Note that ψ−1
i (p) = wip. Let us set g(t) =

∑n
i=1 ψ

−1
i (t)/n = t. Therefore,

T = sup
{

0 < t ≤ 1: nt

1 ∨R(t) ≤ α

}
,

where R(t) =
∑n

i=1 1{pi/wi ≤ t}. In this case, notice that

C =
∑

i∈N0

sup
t∈Cα

ψ−1
i (t)
ng(t) =

∑
i∈N0

sup
t∈Cα

wit

nt
≤ 1
n

∑
i∈N0

wi ≤ 1.

Therefore, as a consequence of Exercise 6.2, the weighted BH procedure controls the FDR at level α. The
weighted BH procedure allows each p-value to be compared with different thresholds. For properly chosen
weights, the weighted BH procedure is expected to deliver higher power.

2 BH procedure under arbitrary dependence
The previous theorem relies on the assumption that the null p-values are mutually independent. In many real
applications, one would expect the p-values to be dependent. We show that the BH procedure at level α can
control the FDR at the level Snα for

Sn = 1 + 1
2 + 1

3 + · · · + 1
n

≈ log(n) + 0.577.

Theorem. Under (arbitrary) dependence among the p-values, the FDR of the BH procedure is controlled at
the level n0Snα/n.
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Proof. As in Section 1.5, we write
FDP =

∑
i∈N0

Vi

R ∨ 1 .

It suffices to show that

E
[

Vi

R ∨ 1

]
≤ Snα

n
.

We note that when R = k, the threshold T = kα/n. Letting ak = kα/n, we have

Vi

R ∨ 1 =
n∑

k=1

Vi

R ∨ 11{R = k}

=
n∑

k=1

1{pi ≤ ak, R = k}
k

=
n∑

k=1

k∑
j=1

1{aj−1 < pi ≤ aj , R = k}
k

=
n∑

j=1

∑
k≥j

1{aj−1 < pi ≤ aj , R = k}
k

≤
n∑

j=1

1{aj−1 < pi ≤ aj , R ≥ j}
j

≤
n∑

j=1

1{aj−1 < pi ≤ aj}
j

.

Taking expectations on both sides, we obtain

E
[

Vi

R ∨ 1

]
≤

n∑
j=1

P (aj−1 < pi ≤ aj)
j

= Snα

n
.

3 Barber and Candès procedure
Barber and Candès (2015) proposed a model-free multiple testing procedure (BC procedure) that exploits the
symmetry of the null p-values (or test statistics) to estimate the number of false rejections. More precisely,
the BC procedure specifies a data-dependent threshold, denoted by T , which is determined as follows:

T = sup
{

0 < t < 0.5 :
1 +

∑n
i=1 1{pi ≥ 1 − t}
1 ∨R(t) ≤ α

}
with R(t) =

∑n
i=1 1{pi ≤ t} and it rejects all Hi with pi ≤ T . Here, 1 +

∑n
i=1 1{pi ≥ 1 − t} serves as an

estimate of the number of false discoveries as∑
i∈N0

1{pi ≤ t} ≈
∑

i∈N0

1{pi ≥ 1 − t} ≤ 1 +
n∑

i=1
1{pi ≥ 1 − t}

where the approximation is due to the symmetry about 0.5 when p-values are under the null and the constant
one is important for achieving the finite sample FDR control.

Exercise 6.3: Generate a sequence of independent z-statistics (Z1, . . . , Zn) with n = 1000. Let the number
of true nulls n0 = 50. Under the null, Zi ∼ N(0, 1) while under the alternative, Zi ∼ N(µ log(n), 1), where µ
controls the signal strength. Subsequently, the p-values are computed as pi = 1 − Φ(Xi), where Φ denotes the
CDF of the standard normal distribution. We define the empirical power of a multiple testing procedure as

POW = S

n− n0
.
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Figure 1: A comparison between the BH and BC procedures

Compute the FDP and power of the BH and BC procedures. Repeat the above simulation 100 times and
report the average FDP and power for µ within a certain range.

3.1 Extra reading: FDR control theory
The BC procedure has been shown to provide finite sample FDR control under suitable assumptions in Barber
and Candès (2015). Here, we provide proof based on the leave-one-out argument.

Theorem. Suppose the null p-values are mutually independent and are independent of the alternative
p-values. The BC procedure controls the FDR at level α.

The proof relies on the following lemma.

Lemma. Let Ti be the threshold for the BC procedure when pi is replaced with min{pi, 1 − pi}. For any i,
j, if min(pi, pj) ≥ 1 − max{Ti, Tj}, then we have Ti = Tj .

Proof of the Lemma. First, given a p-value vector p = (p1, · · · , pn), recall that the threshold T is defined as

T = max

0 < t < 0.5:
1 +

∑n
l=1 1{1 − pl ≤ t}∑n
l=1 1{pl ≤ t}︸ ︷︷ ︸

g(p,t)

≤ α

 .

Without loss of generality, let us assume Ti ≥ Tj . By the assumption that max{1 − pi, 1 − pj} ≤ max{Ti, Tj},
we have 1 − pi ≤ Ti < 0.5 and 1 − pj ≤ Ti < 0.5. Thus pi > 0.5 > Ti. The same discussion for pj leads to
pj > Ti.

Denote p̃i = min{pi, 1 − pi} and p−i = (p1, · · · , pi−1, p̃i, pi+1, · · · , pn) for all i. Consider the function

g(p−j , Ti) =
1 +

∑n
l=1 1{1 − p−j,l ≤ Ti}∑n
l=1 1{p−j,l ≤ Ti}

,
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where p−j,l is the lth entry of p−j . For the denominator, we have

n∑
l=1

1{p−j,l ≤ Ti}

=
n∑

l=1
1{p−i,l ≤ Ti} + 1{p−j,j ≤ Ti}︸ ︷︷ ︸

=1

+ 1{p−j,i ≤ Ti}︸ ︷︷ ︸
=0

− 1{p−i,j ≤ Ti}︸ ︷︷ ︸
=0

− 1{p−i,i ≤ Ti}︸ ︷︷ ︸
=1

=
n∑

l=1
1{p−i,l ≤ Ti}.

Similarly, for the numerator, we have
n∑

l=1
1{1 − p−j,l ≤ Ti}

=
n∑

l=1
1{1 − p−i,l ≤ Ti} + 1{1 − p−j,j ≤ Ti}︸ ︷︷ ︸

=0

+ 1{1 − p−j,i ≤ Ti}︸ ︷︷ ︸
=1

− 1{1 − p−i,j ≤ Ti}︸ ︷︷ ︸
=1

− 1{1 − p−i,i ≤ Ti}︸ ︷︷ ︸
0

=
n∑

l=1
1{1 − p−i,l ≤ Ti}.

Hence, g(p−j , Ti) = g(p−i, Ti) ≤ α. By the definition of Tj , we must have Ti ≤ Tj . Similarly, we get Tj ≤ Ti

and hence Ti = Tj .

Proof of the theorem. First, note that

E

[ ∑
i∈N0

1{pi ≤ T}
1 ∨

∑n
j=1 1{pj ≤ T}

]

=
∑

i∈N0

E

[
1{pi ≤ T}

1 ∨
∑n

j=1 1{pj ≤ T}
1 +

∑n
j=1 1{1 − pj ≤ T}

1 +
∑n

j=1 1{1 − pj ≤ T}

]

≤α
∑

i∈N0

E

[
1{pi ≤ T}

1 +
∑n

j=1 1{1 − pj ≤ T}

]
.

Hence, we only need to show that

∑
i∈N0

E

[
1{pi ≤ T}

1 +
∑n

j=1 1{1 − pj ≤ T}

]
≤ 1.

Let p̃i = min{pi, 1 − pi} and p−i = (p1, . . . , pi−1, p̃i, pi+1, . . . , pn). Define Ti = T (p−i), where we view T as a
function of the p-values. Notice that if pi ≤ T , then we have pi ≤ T < 0.5. Hence, if the ith hypothesis is
rejected, then pi = p̃i. Thus, 1{pi ≤ T} = 1{pi ≤ Ti}, which further implies that

E

[
1{pi ≤ T}

1 +
∑n

j=1 1{1 − pj ≤ T}

]
= E

[
1{pi ≤ Ti}

1 +
∑

j ̸=i 1{1 − pj ≤ Ti}

]
,
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where we use the fact that if pi < 0.5, then 1 − pi ≥ 0.5 > Ti. Let Fi be the sigma algebra generated by p−i.
For i ∈ H0, we have

E

[
1{pi ≤ T}

1 +
∑n

j=1 1{1 − pj ≤ T}

]
=E

[
E

[
1{pi ≤ Ti}

1 +
∑

j ̸=i 1{1 − pj ≤ Ti}

∣∣∣∣∣Fi

]]

=E

[
1

1 +
∑

j ̸=i 1{1 − pj ≤ Ti}
E [1{pi ≤ Ti}|Fi]

]

≤E

[
1

1 +
∑

j ̸=i 1{1 − pj ≤ Ti}
E [1{1 − pj ≤ Ti}|Fi]

]

=E

[
1{1 − pj ≤ Ti}

1 +
∑

j ̸=i 1{1 − pj ≤ Ti}

]
,

where we use the symmetry of the distribution of pi under the null to get the inequality. By the Lemma, we
have

1{1 − pj ≤ Ti}
1 +

∑
j ̸=i 1{1 − pj ≤ Ti}

= 1{1 − pj ≤ Ti}
1 +

∑
j ̸=i 1{1 − pj ≤ Tj}

= 1{1 − pj ≤ Ti}∑n
j=1 1{1 − pj ≤ Tj}

.

If 1 − pj > Ti, both sides are equal to 0. If 1 − pj ≤ Ti, we claim that 1{1 − pj ≤ Ti} = 1{1 − pj ≤ Tj}.
Indeed, if 1 − pj > Ti but 1 − pj ≤ Tj , then we have Ti < Tj . Hence, 1 − pj ≤ Ti < Tj . By the Lemma, we
have Ti = Tj , which contradicts with the assumption Ti < Tj . The other direction can be proved similarly.

Hence, ∑
i∈N0

E

[
1{pi ≤ T}

1 +
∑n

j=1 1{1 − pj ≤ T}

]
≤ E

[∑
i∈N0

1{1 − pj ≤ Ti}∑n
j=1 1{1 − pj ≤ Tj}

]
≤ 1, (2)

which finishes the proof.
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