
STAT 689: Large-scale and high-dimensional statistical inference Fall 2024

Lecture 7

1 PRDS property
In the previous lecture, we have shown that the BH procedure provides FDR control at the level n0Snα/n,
where Sn ≈ log(n). To ensure the FDR control at level α, one has to run the BH procedure at level α/Sn,
which can be very conservative as α/Sn → 0 as n → +∞.

In today’s lecture, we consider the special type of dependence structure named positive regression dependency
on each one from a subset (PRDS) and show that the BH procedure controls the FDR at the desired level
when the p-values exhibit the PRDS property.

1.1 Definitions
For two vectors x, y ∈ Rn with x = (x1, . . . , xn) and y = (y1, . . . , yn), we write y ≥ x if yi ≥ xi for all i. A
subset D of Rn is said to be increasing if for all x ∈ D, y ≥ x implies that y ∈ D.

Definition. A family of random variables (X1, . . . , Xn) is said to be PRDS on a subset I0 ⊂ {1, 2, . . . , n}
if for all i ∈ I0, the function P ((X1, . . . , Xn) ∈ D|Xi = x) is an increasing function of x for any increasing
subset D.

We have the following two observations.

• If (X1, . . . , Xn) is PRDS on I0 and if Yi := fi(Xi) for all 1 ≤ i ≤ n where each fi is strictly increasing or
decreasing, then (Y1, . . . , Yn) is PRDS on I0 as well. Transformation of this form is called co-monotone
transformation. Thus, the PRDS property is preserved under co-monotone transformations.

• If (X1, . . . , Xn) is PRDS on I0 (the set of true nulls), then both pi = F (Xi) (the right-sided p-values)
and pi = 1 − F (Xi) (the left-sided p-values) are PRDS as well. Here F is the CDF of Xi under the
null. This follows from the fact that the CDF and survival functions are co-monotone transforms, and
hence, the p-values are PRDS by the preceding observation.

Exercise 7.1: Prove the two observations above.

1.2 An example
Theorem. Let X = (X1, . . . , Xn) be a multivariate Gaussian random vector with mean µ and covariance
Σ = (σij). X is PRDS on I0 if and only if σij ≥ 0 for any i ∈ I0 and 1 ≤ j ≤ n.

Proof. According to the definition, we need to show that P(X ∈ D|Xi = x) is an increasing function of x for
any increasing subset D for any i ∈ I0. Without loss of generality, we assume that 1 ∈ I0 and i = 1. Write

µ =
(

µ1
µ−1

)
, Σ =

(
Σ1,1 Σ1,−1

Σ−1,1 Σ−1,−1

)
.

Then we have

X−1|X1 = x ∼ N
(
µ−1 + Σ−1,1Σ−1

1,1(x − µ1), Σ−1,−1 − Σ−1,1Σ−1
1,1Σ1,−1

)
.

As σij ≥ 0, we have Σ−1,1 ≥ 0 entrywise, which implies that the conditional mean µx :=
µ−1 + Σ−1,1Σ−1

1,1(x − µ1) is a non-decreasing function in x. Hence, if y ≥ x, µy ≥ µx entrywise.
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Let U ∼ N
(
0, Σ−1,−1 − Σ−1,1Σ−1

1,1Σ1,−1
)

. We have

P(X ∈ D|X1 = x)
=P((x, X−1) ∈ D|X1 = x)
=P((x, U + µx) ∈ D)
≤P((y, U + µy) ∈ D)
=P((y, X−1) ∈ D|X1 = y)
=P(X ∈ D|X1 = y)

which implies that P(X ∈ D|X1 = x) is non-decreasing in x.

Conversely, if we want to prove that PRDS implies that all correlations are non-negative, we can proceed by
contradiction. Assume that there is some σ1j < 0 for some j ̸= 1. We have

Xj |X1 = x ∼ N
(
µj + σj1σ−1

11 (x − µ1), σ2
j

)
.

where σ2
j does not rely on x. The conditional mean is seen to be a strictly decreasing function of x (as

σj1 < 0), which gives that the conditional probability of the event {Xj ≥ µj} is strictly decreasing in x. Since
the set {Xj ≥ µj} is increasing, we have a contradiction to the PRDS property.

2 FDR control under PRDS
Benjamini and Yekutieli (2001) proved the following theorem.

Theorem. The BH procedure controls the FDR at the level n0α/n when the p-values {p1, . . . , pn} are PRDS
on the set of true nulls.

As noted before, PRDS property translates from statistics to one-sided p-values. Hence, to apply the above
theorem, we can simply check the PRDS property on the statistics itself.

This theorem asserts FDR control without assuming any dependence structure on the non-null p-values.
This is desirable since we usually do not know about the structure of the non-null p-values. However, it
does assume the PRDS property, which involves knowing how the non-nulls relate to the true nulls, which is
generally not well known. Thus, the theorem is difficult to apply in practice.

Proof. Without loss of generality, let us assume that H0,1, . . . , H0,n0 are the true nulls. We know that

FDR =
n0∑

i=1
E

[
1{pi ≤ T}

R ∨ 1

]
,

where T = αR/n with R being the number of rejections. We only need to show that

E
[

1{pi ≤ T}
R ∨ 1

]
≤ α

n

for all i = 1, 2, . . . , n0. Note that

E
[

1{pi ≤ T}
R ∨ 1

]
=

n∑
k=1

E
[

1{pi ≤ kα/n, R = k}
k

]

=
n∑

k=1

P(R = k|pi ≤ kα/n)P(pi ≤ kα/n)
k

=
n∑

k=1

kα

n

P(R = k|pi ≤ kα/n)
k

=α

n

n∑
k=1

P(R = k|pi ≤ kα/n).
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We see that {R ≤ k} can be written as {(p1, . . . , pn) ∈ D} for some increasing set D. This is because
increasing all p-values increases the p-value at each rank. Hence, any ranked p-value above the threshold
remains above its threshold, i.e., we accept at least as many as before and, hence, do not reject more
hypotheses. Using this fact, we have

n∑
k=1

P(R = k|pi ≤ kα/n) =
n∑

k=1
{P(R ≤ k|pi ≤ kα/n) − P(R ≤ k − 1|pi ≤ kα/n)}

=P(R ≤ n|pi ≤ α) − P(R ≤ 0|pi ≤ α/n)

+
n−1∑
k=1

{P(R ≤ k|pi ≤ kα/n) − P(R ≤ k|pi ≤ (k + 1)α/n)} .

As P(R ≤ k|pi ≤ x) is increasing in x by the Lemma below, each summand in the summation in the second
line above is non-positive. Thus, we must have

n∑
k=1

P(R = k|pi ≤ kα/n) ≤ P(R ≤ n|pi ≤ α) ≤ 1,

which completes the proof.

Lemma. If the p-values are PRDS on the set of true nulls, then the function P((p1, . . . , pn) ∈ D|pi ≤ t) is
non-decreasing in t for an increasing set D and true null i.

Proof. Write p = (p1, . . . , pn). We first observe that

P(p ∈ D|pi ≤ t) = P(p ∈ D, pi ≤ t)
P(pi ≤ t) .

For t′ > t, we get

P(p ∈ D|pi ≤ t′) = P(p ∈ D, pi ≤ t) + P(p ∈ D, pi ∈ (t, t′])
P(pi ≤ t) + P(pi ∈ (t, t′]) .

It suffices to show that
P(p ∈ D, pi ≤ t)

P(pi ≤ t) ≤ P(p ∈ D, pi ∈ (t, t′])
P(pi ∈ (t, t′]) .

Letting Fi be the CDF of pi, we have

P(p ∈ D, pi ≤ t) =
∫ t

0
P(p ∈ D|pi = s)Fi(ds)

≤
∫ t

0
P(p ∈ D|pi = t)Fi(ds)

=P(p ∈ D|pi = t)Fi(t),

which implies that

P(p ∈ D, pi ≤ t)
P(pi ≤ t) ≤ P(p ∈ D|pi = t).

On the other hand,

P(p ∈ D, pi ∈ (t, t′]) =
∫ t′

t

P(p ∈ D|pi = s)Fi(ds)

≥
∫ t′

t

P(p ∈ D|pi = t)Fi(ds)

=P(pi ∈ (t′, t])P(p ∈ D|pi = t),
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which suggests that

P(p ∈ D, pi ≤ t)
P(pi ≤ t) ≤ P(p ∈ D|pi = t) ≤ P(p ∈ D, pi ∈ (t, t′])

P(pi ∈ (t, t′]) .

3 The FDR conjecture
Let X = (X1, . . . , Xn) be a set of Z-statistics following the multivariate normal distribution with mean
µ = (µ1, . . . , µn) and covariance matrix Σ = (σij) with σii = 1. We are interested in testing the two-sided
hypothesis:

H0,i : µi = 0 versus Ha,i : µi ̸= 0, i = 1, 2, . . . , n.

The two-sided p-value in this case is defined as pi = 2(1 − Φ(|xi|)), where Φ is the CDF of the standard
normal distribution.

Conjecture. The BH procedure applied to the p-values {pi}n
i=1 controls the FDR at level α regardless of

the form of Σ.
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