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Lecture 8

1 Empirical process viewpoint
Recall that the BH procedure rejects all Hi with pi ≤ T , where T is defined as

T = sup
{

0 < t ≤ 1: nt

1 ∨ R(t) ≤ α

}
with R(t) =

∑n
i=1 1{pi ≤ t} being the number of rejections given the threshold t. As argued in Lecture 6, nt

can be viewed as a conservative estimate for the number of false discoveries given the threshold t.

This formulation has a simple interpretation. Let t ∈ (0, 1) be fixed and consider rejecting Hi if and only if
pi ≤ t. We can construct the rejection/acceptance table for the hypotheses whose values depend on t, where
U(t), V (t), T (t), S(t) and R(t) are all stochastic processes indexed by t ∈ [0, 1].

H0 accepted H0 rejected Total
H0 true U(t) V (t) n0
H0 false T (t) S(t) n − n0

n − R(t) R(t) n

Table 1: Potential outcomes for testing multiple hypotheses based on the rejection rule of the form pi ≤ t for
t ∈ [0, 1].

Define

FDP(t) = V (t)
1 ∨ R(t) , FDR(t) = E[FDP(t)].

In general, we let F̂DR(t) be an estimate for FDR(t). Then, an FDR-controlling procedure can be described
as finding

T = sup{0 ≤ t ≤ 1 : F̂DR(t) ≤ α}

and rejecting all Hi with pi ≤ T.

Recall that

• BH procedure: F̂DR(t) = nt/{1 ∨ R(t)}.

• BC procedure: F̂DR(t) =
∑n

i=1 1{1 − pi ≤ t}/{1 ∨ R(t)}.

1.1 FDR control based on martingale theory
We now focus on the BH procedure, where F̂DP(t) = nt/{1 ∨ R(t)}. We give an alternate proof of the FDR
control result for the BH procedure using martingale theory

Define the filtration Ft = σ(V (s), R(s) : t ≤ s ≤ 1). This is a backward filtration as Fs ⊂ Ft for t < s. We
define the reverse time martingale

V (t)
t

, 0 ≤ t ≤ 1
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adaptive to Ft. Note that for s ≤ t, conditional on Ft, V (s) = #{pi : pi ≤ s, Hi is true} follows Bin(V (t), s/t).
Therefore,

E
[

V (s)
s

∣∣∣Ft

]
=1

s
E[V (s)|Ft] = 1

s

s

t
V (t) = V (t)

t
.

This shows that {V (t)/t : 0 ≤ t ≤ 1} is a reverse time martingale.

Next, we note that T = sup{0 ≤ t ≤ 1 : nt/{1 ∨ R(t)} ≤ α} is a stopping time as {T ≤ t} ∈ Ft. Applying
the optional stopping theorem, we get

FDR =E
[

V (T )
1 ∨ R(T )

]
= 1

n
E

[
V (T )

T

nT

1 ∨ R(T )

]
≤α

n
E

[
V (T )

T

]
=α

n
E [V (1)]

=αn0

n
.

Background: A forward filtration is an increasing sequence {Ft : 0 ≤ t ≤ 1} of σ-algebras:

Fs ⊆ Ft

for s ≤ t. A forward martingale with respect to {Ft : 0 ≤ t ≤ 1} is a stochastic process X(t) such that

1. X(t) is measurable with respect to Ft;

2. For s ≤ t,
E[X(t)|Fs] = X(s).

A random variable T is called a stopping time if

{T ≤ t} ∈ Ft

for all t.

Optional stopping theorem. For a forward martingale, we have

E[X(T )] = E[X(0)].

A reverse filtration is a decreasing sequence {Ft : 0 ≤ t ≤ 1} of σ-algebras:

Fs ⊇ Ft

for s ≤ t. A reverse martingale with respect to {Ft : 0 ≤ t ≤ 1} is a stochastic process X(t) such that

1. X(t) is measurable with respect to Ft;

2. For s ≤ t,
E[X(s)|Ft] = X(t).

If T is a stopping time, we have

E[X(T )] = E[X(1)].
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2 Storey’s procedure
Storey’s procedure improves the BH procedure by using the p-values to estimate the null proportion π0 := n0/n.
Specifically, we define

πλ
0 = 1 + n − R(λ)

(1 − λ)n ,

where λ ∈ [0, 1) is fixed.

We briefly explain the intuition behind the construction of πλ
0 . Note that for large n0,

1 + n − R(λ) = 1 +
n∑

i=1
1{pi > λ} ≥ 1 +

∑
i∈N0

1{pi > λ} ≈ n0(1 − λ)

and thus

πλ
0 ≥

1 +
∑

i∈N0
1{pi > λ}

(1 − λ)n ≈ (1 − λ)n0

(1 − λ)n = π0.

Storey’s procedure rejects all Hi with pi ≤ T , where T is defined as

T = sup
{

0 < t ≤ λ : nπλ
0 t

1 ∨ R(t) ≤ α

}
.

When πλ
0 < 1, Storey’s procedure makes more rejections than the BH procedure because Storey’s procedure

has a less conservative estimate for the FDR.

2.1 FDR control theory
We now show that Storey’s procedure also provides FDR control. As before, we can show that V (t)/t =∑

i∈N0
1{pi ≤ t}/t for 0 < t ≤ λ is a martingale with time running backward with respect to the filtration

Ft and T is a stopping time with respect to Ft. Thus

FDR =E
[

V (T )
1 ∨ R(T )

]
= 1

n
E

[
V (T )
πλ

0 T

nπλ
0 T

1 ∨ R(T )

]
≤α

n
E

[
V (T )
πλ

0 T

]
.

By the optional stopping theorem, we have

E
[

V (T )
πλ

0 T

]
= E

[
n(1 − λ)

1 + n − R(λ)
V (λ)

λ

]
.

Since
1 + n − R(λ) = 1 + (n0 − V (λ)) + {(n − n0) − (R(λ) − V (λ))} ≥ 1 + n0 − V (λ),

we have
E

[
V (T )
πλ

0 T

]
≤ n(1 − λ)

λ
E

[
V (λ)

1 + n0 − V (λ)

]
.

Because the p-values follow the uniform distribution on [0, 1] under the null, we have V (λ) ∼ Bin(n0, λ),
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which implies

E
[

V (λ)
1 + n0 − V (λ)

]
=

n0∑
i=1

P
(
V (λ) = i

) i

1 + n0 − i

=
n0∑

i=1

(
n0

i

)
λi(1 − λ)n0−i i

1 + n0 − i

=
n0∑

i=1
λi(1 − λ)n0−i n0! × i

(1 + n0 − i) × (n0 − i)! × i!

=
n0∑

i=1
λi(1 − λ)n0−i n0!

(1 + n0 − i)!(i − 1)!

=
n0−1∑
j=0

λj+1(1 − λ)n0−j−1 n0!
(n0 − j)!j!

= λ

1 − λ

n0−1∑
j=0

λj(1 − λ)n0−j n0!
(n0 − j)!j!

= λ

1 − λ

(
(λ + 1 − λ)n0 − λn0

)
= λ(1 − λn0)

1 − λ
.

Hence,
FDR ≤ α

n
E

[
V (T )
πλ

0 T

]
≤ α(1 − λn0) ≤ α.

3 Bayesian viewpoint
The Bayesian perspective provides an insightful way to approach the multiple-testing problem. It allows us
to derive the optimal testing procedure from the Bayesian viewpoint.

3.1 Two-group mixture models
For the ith hypothesis, we let θi be its underlying truth. More specifically, θi = 1 if Hi is non-null/alternative
and θi = 0 if Hi is null. From the Bayesian perspective, we can view θi as a sequence of i.i.d random variables
generated from Bern(1 − π0), where π0 is the probability of a randomly selected hypothesis being null. When
θi = 0, it is common to assume that pi follows the uniform distribution over [0, 1]. Under the alternative (i.e.,
θi = 1), we will assume that pi is drawn from a distribution concentrated around zero. Therefore, conditional
on θi,

pi|θi ∼ (1 − θi)f0 + θif1

and marginally, the p-values follow the mixture model:

pi ∼ π0f0 + (1 − π0)f1,

where f0 and f1 denote the p-value densities under the null and alternative, respectively.

3.2 Local false discovery rate
The goal of multiple testing is to separate the alternative cases (θi = 1) from the null cases (θi = 0). To
motivate an optimal procedure, we consider the so-called marginal FDR (mFDR):

mFDR = E[V ]
1 ∨ E[R] .
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Suppose that pi follows the mixture model and we intend to reject the ith null hypothesis if pi ≤ ti. The
mFDR is defined as

mFDR(t) =E [
∑n

i=1(1 − θi)1{pi ≤ ti}]
E [

∑n
i=1 1{pi ≤ ti}] , t = (t1, . . . , tn).

Under the two-group mixture model, the mFDR can be simplified as

mFDR(t) =
∑n

i=1 π0ti∑n
i=1{π0ti + (1 − π0)F1(ti)}

,

where F1 is the CDF associated with f1. Consider the problem

max
t

n∑
i=1

(1 − π0)F1(ti) subject to mFDR(t) ≤ α,

where
∑n

i=1(1 − π0)F1(ti) = E[
∑n

i=1 θi1{pi ≤ t}] is the expected number of true discoveries.

Define the local false discovery rate as

LFDR(t) = π0f0(t)
π0f0(t) + (1 − π0)f1(t) ,

where f0(t) = 1 is the density of Unif[0, 1].

Theorem. The optimal solution t∗ = (t∗
1, t∗

2, . . . , t∗
n) to the above constraint optimization problem satisfies

that LFDR(t∗
i ) = c for all 1 ≤ i ≤ n.

Proof. Note that we can rewrite the constraint as
n∑

i=1
π0ti − α

n∑
i=1

{π0ti + (1 − π0)F1(ti)} ≤ 0.

The Lagrangian function associated with the optimization problem is given by

L(t, λ) =
n∑

i=1
(1 − π0)F1(ti) − λ

n∑
i=1

π0ti + λα

n∑
i=1

{π0ti + (1 − π0)F1(ti)}

where λ ≥ 0 is called the Lagrange multiplier. Taking the derivative with respect to ti in L and setting it to
be zero, we have

(1 − π0)f1(ti) − λπ0 + λα{π0 + (1 − π0)f1(ti)} = 0,

which leads to

LFDR(t∗
i ) = π0

π0 + (1 − π0)f1(t∗
i ) = 1 + λα

1 + λ
.

Assumption. Assume that f1(t) is strictly decreasing.

Under the above assumption, LFDR(t) is strictly increasing. Then pi ≤ t∗
i is equivalent to

LFDR(pi) ≤ LFDR(t∗
i ) = c.

Thus, our goal becomes finding c such that the FDR is controlled while making a large number of true
rejections.

We consider the procedure by finding

C = sup{0 ≤ c ≤ 1 : F̂DR(c) ≤ α}
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and reject all Hi with LFDR(pi) ≤ C. Given the rejection rule LFDR(pi) ≤ c, we can define

V (c) =
n∑

i=1
(1 − θi)1{LFDR(pi) ≤ c}.

Exercise 8.1: Show that

E[V (c)] = nE[LFDR(p)1{LFDR(p) ≤ c}].

Therefore, we can estimate the FDR by

F̂DR(c) =
∑n

i=1 LFDR(pi)1{LFDR(pi) ≤ c}∑n
i=1 1{LFDR(pi) ≤ c}

Let LFDRi = LFDR(pi) and LFDR(1) ≤ LFDR(2) ≤ · · · ≤ LFDR(n). In this case, show that the procedure
is equivalent to the step-up procedure by finding

j∗ = max
{

1 ≤ j ≤ n : j−1
j∑

i=1
LFDR(i) ≤ α

}
and reject H(1), . . . , H(j∗), where H(i) is the hypothesis associated with LFDR(i).

In reality, π0 and f1 are unknown and have to be estimated from the data. One approach is to find the
estimates by maximizing the likelihood function, i.e.,

(π̂0, f̂1) = argmaxπ0,f1

n∑
i=1

log(π0 + (1 − π0)f1(pi)).

The optimization can be solved by the expectation-maximization algorithm.

4 Positive false discovery rate and q-values
The positive false discovery rate (pFDR) is defined as

pFDR = E
[

V

R

∣∣∣R > 0
]

.

Note that

FDR = pFDR × P (R > 0).

The term “positive” has been added to reflect the fact that we are conditioning on the event that positive
findings have occurred. When the FDR is controlled at level α, the pFDR is controlled at level α/P (R > 0).

Let X1, . . . , Xn be n statistics for testing H1, . . . , Hn. Consider the two-group mixture model:

Xi|θi ∼ (1 − θi)f0 + θif1,

and θi ∼ Bern(1 − π0). Denote the critical region (the values of Xi for which Hi is rejected) as Γ. Then both
V and R can be viewed as functions of Γ. Given the rejection region Γ, define

pFDR(Γ) = E
[

V (Γ)
R(Γ)

∣∣∣R(Γ) > 0
]

.

Theorem. We have

pFDR(Γ) = π0P (X ∈ Γ)
π0P (X ∈ Γ|θ = 0) + (1 − π0)P (X ∈ Γ|θ = 1) = P (θ = 0|X ∈ Γ),
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where X|θ ∼ (1 − θ)f0 + θf1 and θ ∼ Bern(1 − π0).

Proof. Note that

pFDR(Γ) =E
[

V (Γ)
R(Γ)

∣∣∣R(Γ) > 0
]

=
n∑

k=1
E

[
V (Γ)
R(Γ)

∣∣∣R(Γ) = k

]
P (R(Γ) = k|R(Γ) > 0)

=
n∑

k=1
E

[
V (Γ)

k

∣∣∣R(Γ) = k

]
P (R(Γ) = k|R(Γ) > 0)

Because of the i.i.d. assumption, it follows that

E
[
V (Γ)

∣∣∣R(Γ) = k
]

=
n∑

i=1
E

[
1{Xi ∈ Γ, θi = 0}

∣∣∣R(Γ) = k
]

=
n∑

i=1
E

[
1{Xi ∈ Γ, θi = 0}

∣∣∣X1, . . . , Xk ∈ Γ, Xk+1, . . . , Xn /∈ Γ
]

=
k∑

i=1
E

[
1{θi = 0}

∣∣∣X1, . . . , Xk ∈ Γ, Xk+1, . . . , Xn /∈ Γ
]

=
k∑

i=1
E

[
1{θi = 0}

∣∣∣Xi ∈ Γ
]

=kP (θ = 0|X ∈ Γ).

Thus

pFDR(Γ) =
n∑

k=1
E

[
V (Γ)

k

∣∣∣R(Γ) = k

]
P (R(Γ) = k|R(Γ) > 0)

=P (θ|X ∈ Γ)
n∑

k=1
P (R(Γ) = k|R(Γ) > 0) = P (θ|X ∈ Γ).

Note that E[V (Γ)] = nπ0P (X ∈ Γ) and E[R(Γ)] = nP (X ∈ Γ). As a corollary of the above theorem, we have

pFDR(Γ) = E[V (Γ)]
E[R(Γ)] .

Now, let us consider a nested set of significance regions without loss of generality by {Γα : 0 < α < 1}, where
α is such that

P (X ∈ Γα|θ = 0) = α.

Note that Γα′ ⊆ Γα for α′ ≤ α. Using this notation, the p-value of an observed statistic X = x is defined to
be

p-value(x) = inf
Γα:x∈Γα

P (X ∈ Γα|θ = 0).

As a special case, consider Γα = {u : u ≥ cα}. Then we have

inf
Γα:x∈Γα

P (X ∈ Γα|θ = 0) = inf
cα:x≥cα

P (X ≥ cα|θ = 0) = P (X ≥ x|θ = 0),

which coincides with the usual definition of p-values.
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Definition. The q-value of an observed statistic X = x is defined as

q-value(x) = inf
Γα:x∈Γα

pFDR(Γα) = inf
Γα:x∈Γα

P (θ = 0|X ∈ Γα).

In other words, the above definition says the q-value is a measure of the strength of an observed statistic
with respect to the pFDR; it is the minimum pFDR that can occur when rejecting a statistic with value x for
the set of nested significance regions.
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