Lecture 8

1 Empirical process viewpoint

Recall that the BH procedure rejects all H_i with $p_i \leq T$, where T is defined as

$$T = \sup \left\{ 0 < t \le 1 \colon \frac{nt}{1 \lor R(t)} \le \alpha \right\}$$

with $R(t) = \sum_{i=1}^{n} \mathbf{1}\{p_i \leq t\}$ being the number of rejections given the threshold t. As argued in Lecture 6, nt can be viewed as a conservative estimate for the number of false discoveries given the threshold t.

This formulation has a simple interpretation. Let $t \in (0,1)$ be fixed and consider rejecting H_i if and only if $p_i \leq t$. We can construct the rejection/acceptance table for the hypotheses whose values depend on t, where U(t), V(t), T(t), S(t) and R(t) are all stochastic processes indexed by $t \in [0,1]$.

	H_0 accepted	H_0 rejected	Total
H_0 true	U(t)	V(t)	n_0
H_0 false	T(t)	S(t)	$n-n_0$
	n - R(t)	R(t)	n

Table 1: Potential outcomes for testing multiple hypotheses based on the rejection rule of the form $p_i \leq t$ for $t \in [0, 1]$.

Define

$$FDP(t) = \frac{V(t)}{1 \vee R(t)}, \quad FDR(t) = \mathbb{E}[FDP(t)].$$

In general, we let $\widehat{\text{FDR}}(t)$ be an estimate for FDR(t). Then, an FDR-controlling procedure can be described as finding

$$T=\sup\{0\leq t\leq 1: \widehat{\mathrm{FDR}}(t)\leq \alpha\}$$

and rejecting all H_i with $p_i \leq T$.

Recall that

- BH procedure: $\widehat{\text{FDR}}(t) = nt/\{1 \vee R(t)\}.$
- BC procedure: $\widehat{\text{FDR}}(t) = \sum_{i=1}^{n} \mathbf{1}\{1 p_i \le t\}/\{1 \lor R(t)\}.$

1.1 FDR control based on martingale theory

We now focus on the BH procedure, where $\widehat{\text{FDP}}(t) = nt/\{1 \vee R(t)\}$. We give an alternate proof of the FDR control result for the BH procedure using martingale theory

Define the filtration $\mathcal{F}_t = \sigma(V(s), R(s) : t \leq s \leq 1)$. This is a backward filtration as $\mathcal{F}_s \subset \mathcal{F}_t$ for t < s. We define the reverse time martingale

$$\frac{V(t)}{t}$$
, $0 \le t \le 1$

adaptive to \mathcal{F}_t . Note that for $s \leq t$, conditional on \mathcal{F}_t , $V(s) = \#\{p_i : p_i \leq s, H_i \text{ is true}\}\$ follows Bin(V(t), s/t). Therefore,

$$\mathbb{E}\left[\frac{V(s)}{s}\Big|\mathcal{F}_t\right] = \frac{1}{s}\mathbb{E}[V(s)|\mathcal{F}_t] = \frac{1}{s}\frac{s}{t}V(t) = \frac{V(t)}{t}.$$

This shows that $\{V(t)/t: 0 \le t \le 1\}$ is a reverse time martingale.

Next, we note that $T = \sup\{0 \le t \le 1 : nt/\{1 \lor R(t)\} \le \alpha\}$ is a stopping time as $\{T \le t\} \in \mathcal{F}_t$. Applying the optional stopping theorem, we get

$$\begin{aligned} \text{FDR} = & \mathbb{E} \left[\frac{V(T)}{1 \vee R(T)} \right] \\ = & \frac{1}{n} \mathbb{E} \left[\frac{V(T)}{T} \frac{nT}{1 \vee R(T)} \right] \\ \leq & \frac{\alpha}{n} \mathbb{E} \left[\frac{V(T)}{T} \right] \\ = & \frac{\alpha}{n} \mathbb{E} \left[V(1) \right] \\ = & \frac{\alpha n_0}{n}. \end{aligned}$$

Background: A forward filtration is an increasing sequence $\{\mathcal{F}_t : 0 \le t \le 1\}$ of σ -algebras:

$$\mathcal{F}_s \subset \mathcal{F}_t$$

for $s \leq t$. A forward martingale with respect to $\{\mathcal{F}_t : 0 \leq t \leq 1\}$ is a stochastic process X(t) such that

- 1. X(t) is measurable with respect to \mathcal{F}_t ;
- 2. For $s \leq t$,

$$\mathbb{E}[X(t)|\mathcal{F}_s] = X(s).$$

A random variable T is called a stopping time if

$$\{T < t\} \in \mathcal{F}_t$$

for all t.

Optional stopping theorem. For a forward martingale, we have

$$\mathbb{E}[X(T)] = \mathbb{E}[X(0)].$$

A reverse filtration is a decreasing sequence $\{\mathcal{F}_t : 0 \leq t \leq 1\}$ of σ -algebras:

$$\mathcal{F}_s \supset \mathcal{F}_t$$

for $s \leq t$. A reverse martingale with respect to $\{\mathcal{F}_t : 0 \leq t \leq 1\}$ is a stochastic process X(t) such that

- 1. X(t) is measurable with respect to \mathcal{F}_t ;
- 2. For $s \leq t$,

$$\mathbb{E}[X(s)|\mathcal{F}_t] = X(t).$$

If T is a stopping time, we have

$$\mathbb{E}[X(T)] = \mathbb{E}[X(1)].$$

2 Storey's procedure

Storey's procedure improves the BH procedure by using the p-values to estimate the null proportion $\pi_0 := n_0/n$. Specifically, we define

$$\pi_0^{\lambda} = \frac{1 + n - R(\lambda)}{(1 - \lambda)n},$$

where $\lambda \in [0, 1)$ is fixed.

We briefly explain the intuition behind the construction of π_0^{λ} . Note that for large n_0 ,

$$1 + n - R(\lambda) = 1 + \sum_{i=1}^{n} \mathbf{1}\{p_i > \lambda\} \ge 1 + \sum_{i \in \mathcal{N}_0} \mathbf{1}\{p_i > \lambda\} \approx n_0(1 - \lambda)$$

and thus

$$\pi_0^{\lambda} \ge \frac{1 + \sum_{i \in \mathcal{N}_0} \mathbf{1}\{p_i > \lambda\}}{(1 - \lambda)n} \approx \frac{(1 - \lambda)n_0}{(1 - \lambda)n} = \pi_0.$$

Storey's procedure rejects all H_i with $p_i \leq T$, where T is defined as

$$T = \sup \left\{ 0 < t \le \lambda \colon \frac{n\pi_0^{\lambda} t}{1 \lor R(t)} \le \alpha \right\}.$$

When $\pi_0^{\lambda} < 1$, Storey's procedure makes more rejections than the BH procedure because Storey's procedure has a less conservative estimate for the FDR.

2.1 FDR control theory

We now show that Storey's procedure also provides FDR control. As before, we can show that $V(t)/t = \sum_{i \in \mathcal{N}_0} \mathbf{1}\{p_i \leq t\}/t$ for $0 < t \leq \lambda$ is a martingale with time running backward with respect to the filtration \mathcal{F}_t and T is a stopping time with respect to \mathcal{F}_t . Thus

$$FDR = \mathbb{E}\left[\frac{V(T)}{1 \vee R(T)}\right]$$
$$= \frac{1}{n} \mathbb{E}\left[\frac{V(T)}{\pi_0^{\lambda} T} \frac{n \pi_0^{\lambda} T}{1 \vee R(T)}\right]$$
$$\leq \frac{\alpha}{n} \mathbb{E}\left[\frac{V(T)}{\pi_0^{\lambda} T}\right].$$

By the optional stopping theorem, we have

$$\mathbb{E}\left[\frac{V(T)}{\pi_0^{\lambda}T}\right] = \mathbb{E}\left[\frac{n(1-\lambda)}{1+n-R(\lambda)}\frac{V(\lambda)}{\lambda}\right].$$

Since

$$1 + n - R(\lambda) = 1 + (n_0 - V(\lambda)) + \{(n - n_0) - (R(\lambda) - V(\lambda))\} \ge 1 + n_0 - V(\lambda),$$

we have

$$\mathbb{E}\left[\frac{V(T)}{\pi_0^{\lambda}T}\right] \leq \frac{n(1-\lambda)}{\lambda}\mathbb{E}\left[\frac{V(\lambda)}{1+n_0-V(\lambda)}\right].$$

Because the p-values follow the uniform distribution on [0,1] under the null, we have $V(\lambda) \sim \text{Bin}(n_0,\lambda)$,

which implies

$$\mathbb{E}\left[\frac{V(\lambda)}{1+n_0-V(\lambda)}\right] = \sum_{i=1}^{n_0} P(V(\lambda)=i) \frac{i}{1+n_0-i}$$

$$= \sum_{i=1}^{n_0} \binom{n_0}{i} \lambda^i (1-\lambda)^{n_0-i} \frac{i}{1+n_0-i}$$

$$= \sum_{i=1}^{n_0} \lambda^i (1-\lambda)^{n_0-i} \frac{n_0! \times i}{(1+n_0-i) \times (n_0-i)! \times i!}$$

$$= \sum_{i=1}^{n_0} \lambda^i (1-\lambda)^{n_0-i} \frac{n_0!}{(1+n_0-i)!(i-1)!}$$

$$= \sum_{j=0}^{n_0-1} \lambda^{j+1} (1-\lambda)^{n_0-j-1} \frac{n_0!}{(n_0-j)!j!}$$

$$= \frac{\lambda}{1-\lambda} \sum_{j=0}^{n_0-1} \lambda^j (1-\lambda)^{n_0-j} \frac{n_0!}{(n_0-j)!j!}$$

$$= \frac{\lambda}{1-\lambda} ((\lambda+1-\lambda)^{n_0}-\lambda^{n_0})$$

$$= \frac{\lambda(1-\lambda^{n_0})}{1-\lambda}.$$

Hence,

$$\mathrm{FDR} \leq \frac{\alpha}{n} \mathbb{E} \left[\frac{V(T)}{\pi_0^{\lambda} T} \right] \leq \alpha (1 - \lambda^{n_0}) \leq \alpha.$$

3 Bayesian viewpoint

The Bayesian perspective provides an insightful way to approach the multiple-testing problem. It allows us to derive the optimal testing procedure from the Bayesian viewpoint.

3.1 Two-group mixture models

For the *i*th hypothesis, we let θ_i be its underlying truth. More specifically, $\theta_i = 1$ if H_i is non-null/alternative and $\theta_i = 0$ if H_i is null. From the Bayesian perspective, we can view θ_i as a sequence of i.i.d random variables generated from Bern $(1 - \pi_0)$, where π_0 is the probability of a randomly selected hypothesis being null. When $\theta_i = 0$, it is common to assume that p_i follows the uniform distribution over [0, 1]. Under the alternative (i.e., $\theta_i = 1$), we will assume that p_i is drawn from a distribution concentrated around zero. Therefore, conditional on θ_i ,

$$p_i|\theta_i \sim (1-\theta_i)f_0 + \theta_i f_1$$

and marginally, the p-values follow the mixture model:

$$p_i \sim \pi_0 f_0 + (1 - \pi_0) f_1$$

where f_0 and f_1 denote the p-value densities under the null and alternative, respectively.

3.2 Local false discovery rate

The goal of multiple testing is to separate the alternative cases ($\theta_i = 1$) from the null cases ($\theta_i = 0$). To motivate an optimal procedure, we consider the so-called marginal FDR (mFDR):

$$mFDR = \frac{\mathbb{E}[V]}{1 \vee \mathbb{E}[R]}.$$

Suppose that p_i follows the mixture model and we intend to reject the ith null hypothesis if $p_i \leq t_i$. The mFDR is defined as

$$\mathrm{mFDR}(\mathbf{t}) = \frac{\mathbb{E}\left[\sum_{i=1}^{n} (1 - \theta_i) \mathbf{1}\{p_i \le t_i\}\right]}{\mathbb{E}\left[\sum_{i=1}^{n} \mathbf{1}\{p_i \le t_i\}\right]}, \quad \mathbf{t} = (t_1, \dots, t_n).$$

Under the two-group mixture model, the mFDR can be simplified as

$$mFDR(\mathbf{t}) = \frac{\sum_{i=1}^{n} \pi_0 t_i}{\sum_{i=1}^{n} \{\pi_0 t_i + (1 - \pi_0) F_1(t_i)\}},$$

where F_1 is the CDF associated with f_1 . Consider the problem

$$\max_{\mathbf{t}} \sum_{i=1}^{n} (1 - \pi_0) F_1(t_i) \quad \text{subject to} \quad \text{mFDR}(\mathbf{t}) \le \alpha,$$

where $\sum_{i=1}^{n} (1 - \pi_0) F_1(t_i) = \mathbb{E}[\sum_{i=1}^{n} \theta_i \mathbf{1} \{ p_i \le t \}]$ is the expected number of true discoveries.

Define the local false discovery rate as

LFDR(t) =
$$\frac{\pi_0 f_0(t)}{\pi_0 f_0(t) + (1 - \pi_0) f_1(t)}$$
,

where $f_0(t) = 1$ is the density of Unif[0, 1].

Theorem. The optimal solution $\mathbf{t}^* = (t_1^*, t_2^*, \dots, t_n^*)$ to the above constraint optimization problem satisfies that LFDR $(t_i^*) = c$ for all $1 \le i \le n$.

Proof. Note that we can rewrite the constraint as

$$\sum_{i=1}^{n} \pi_0 t_i - \alpha \sum_{i=1}^{n} \{ \pi_0 t_i + (1 - \pi_0) F_1(t_i) \} \le 0.$$

The Lagrangian function associated with the optimization problem is given by

$$\mathcal{L}(\mathbf{t}, \lambda) = \sum_{i=1}^{n} (1 - \pi_0) F_1(t_i) - \lambda \sum_{i=1}^{n} \pi_0 t_i + \lambda \alpha \sum_{i=1}^{n} \{ \pi_0 t_i + (1 - \pi_0) F_1(t_i) \}$$

where $\lambda \geq 0$ is called the Lagrange multiplier. Taking the derivative with respect to t_i in \mathcal{L} and setting it to be zero, we have

$$(1 - \pi_0) f_1(t_i) - \lambda \pi_0 + \lambda \alpha \{ \pi_0 + (1 - \pi_0) f_1(t_i) \} = 0,$$

which leads to

LFDR
$$(t_i^*) = \frac{\pi_0}{\pi_0 + (1 - \pi_0)f_1(t_i^*)} = \frac{1 + \lambda \alpha}{1 + \lambda}.$$

Assumption. Assume that $f_1(t)$ is strictly decreasing.

Under the above assumption, LFDR(t) is strictly increasing. Then $p_i \leq t_i^*$ is equivalent to

$$LFDR(p_i) \le LFDR(t_i^*) = c.$$

Thus, our goal becomes finding c such that the FDR is controlled while making a large number of true rejections.

We consider the procedure by finding

$$C=\sup\{0\leq c\leq 1: \widehat{\mathrm{FDR}}(c)\leq \alpha\}$$

and reject all H_i with LFDR $(p_i) \leq C$. Given the rejection rule LFDR $(p_i) \leq c$, we can define

$$V(c) = \sum_{i=1}^{n} (1 - \theta_i) \mathbf{1} \{ LFDR(p_i) \le c \}.$$

Exercise 8.1: Show that

$$\mathbb{E}[V(c)] = n\mathbb{E}[LFDR(p)\mathbf{1}\{LFDR(p) \le c\}].$$

Therefore, we can estimate the FDR by

$$\widehat{\text{FDR}}(c) = \frac{\sum_{i=1}^{n} \text{LFDR}(p_i) \mathbf{1} \{ \text{LFDR}(p_i) \le c \}}{\sum_{i=1}^{n} \mathbf{1} \{ \text{LFDR}(p_i) \le c \}}$$

Let $LFDR_i = LFDR(p_i)$ and $LFDR_{(1)} \le LFDR_{(2)} \le \cdots \le LFDR_{(n)}$. In this case, show that the procedure is equivalent to the step-up procedure by finding

$$j^* = \max \left\{ 1 \le j \le n : j^{-1} \sum_{i=1}^{j} \text{LFDR}_{(i)} \le \alpha \right\}$$

and reject $H_{(1)}, \ldots, H_{(j^*)}$, where $H_{(i)}$ is the hypothesis associated with LFDR_(i).

In reality, π_0 and f_1 are unknown and have to be estimated from the data. One approach is to find the estimates by maximizing the likelihood function, i.e.,

$$(\hat{\pi}_0, \hat{f}_1) = \operatorname{argmax}_{\pi_0, f_1} \sum_{i=1}^n \log(\pi_0 + (1 - \pi_0) f_1(p_i)).$$

The optimization can be solved by the expectation-maximization algorithm.

4 Positive false discovery rate and q-values

The positive false discovery rate (pFDR) is defined as

$$pFDR = \mathbb{E}\left[\frac{V}{R}\middle|R > 0\right].$$

Note that

$$FDR = pFDR \times P(R > 0).$$

The term "positive" has been added to reflect the fact that we are conditioning on the event that positive findings have occurred. When the FDR is controlled at level α , the pFDR is controlled at level $\alpha/P(R>0)$.

Let X_1, \ldots, X_n be n statistics for testing H_1, \ldots, H_n . Consider the two-group mixture model:

$$X_i|\theta_i \sim (1-\theta_i)f_0 + \theta_i f_1$$

and $\theta_i \sim \text{Bern}(1 - \pi_0)$. Denote the critical region (the values of X_i for which H_i is rejected) as Γ . Then both V and R can be viewed as functions of Γ . Given the rejection region Γ , define

$$\mathrm{pFDR}(\Gamma) = \mathbb{E}\left[\frac{V(\Gamma)}{R(\Gamma)}\middle|R(\Gamma) > 0\right].$$

Theorem. We have

$$\mathrm{pFDR}(\Gamma) = \frac{\pi_0 P(X \in \Gamma)}{\pi_0 P(X \in \Gamma | \theta = 0) + (1 - \pi_0) P(X \in \Gamma | \theta = 1)} = P(\theta = 0 | X \in \Gamma),$$

where $X|\theta \sim (1-\theta)f_0 + \theta f_1$ and $\theta \sim \text{Bern}(1-\pi_0)$.

Proof. Note that

$$\begin{aligned} \text{pFDR}(\Gamma) = & \mathbb{E}\left[\frac{V(\Gamma)}{R(\Gamma)}\Big|R(\Gamma) > 0\right] \\ = & \sum_{k=1}^{n} \mathbb{E}\left[\frac{V(\Gamma)}{R(\Gamma)}\Big|R(\Gamma) = k\right] P(R(\Gamma) = k|R(\Gamma) > 0) \\ = & \sum_{k=1}^{n} \mathbb{E}\left[\frac{V(\Gamma)}{k}\Big|R(\Gamma) = k\right] P(R(\Gamma) = k|R(\Gamma) > 0) \end{aligned}$$

Because of the i.i.d. assumption, it follows that

$$\mathbb{E}\left[V(\Gamma)\Big|R(\Gamma)=k\right] = \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{1}\{X_{i}\in\Gamma,\theta_{i}=0\}\Big|R(\Gamma)=k\right]$$

$$= \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{1}\{X_{i}\in\Gamma,\theta_{i}=0\}\Big|X_{1},\ldots,X_{k}\in\Gamma,X_{k+1},\ldots,X_{n}\notin\Gamma\right]$$

$$= \sum_{i=1}^{k} \mathbb{E}\left[\mathbf{1}\{\theta_{i}=0\}\Big|X_{1},\ldots,X_{k}\in\Gamma,X_{k+1},\ldots,X_{n}\notin\Gamma\right]$$

$$= \sum_{i=1}^{k} \mathbb{E}\left[\mathbf{1}\{\theta_{i}=0\}\Big|X_{i}\in\Gamma\right]$$

$$= kP(\theta=0|X\in\Gamma).$$

Thus

$$pFDR(\Gamma) = \sum_{k=1}^{n} \mathbb{E}\left[\frac{V(\Gamma)}{k} \middle| R(\Gamma) = k\right] P(R(\Gamma) = k | R(\Gamma) > 0)$$
$$= P(\theta | X \in \Gamma) \sum_{k=1}^{n} P(R(\Gamma) = k | R(\Gamma) > 0) = P(\theta | X \in \Gamma).$$

Note that $\mathbb{E}[V(\Gamma)] = n\pi_0 P(X \in \Gamma)$ and $\mathbb{E}[R(\Gamma)] = nP(X \in \Gamma)$. As a corollary of the above theorem, we have

$$\operatorname{pFDR}(\Gamma) = \frac{\mathbb{E}[V(\Gamma)]}{\mathbb{E}[R(\Gamma)]}.$$

Now, let us consider a nested set of significance regions without loss of generality by $\{\Gamma_{\alpha}: 0 < \alpha < 1\}$, where α is such that

$$P(X \in \Gamma_{\alpha} | \theta = 0) = \alpha.$$

Note that $\Gamma_{\alpha'} \subseteq \Gamma_{\alpha}$ for $\alpha' \leq \alpha$. Using this notation, the p-value of an observed statistic X = x is defined to be

$$p-value(x) = \inf_{\Gamma_{\alpha}: x \in \Gamma_{\alpha}} P(X \in \Gamma_{\alpha} | \theta = 0).$$

As a special case, consider $\Gamma_{\alpha} = \{u : u \geq c_{\alpha}\}$. Then we have

$$\inf_{\Gamma_{\alpha}: x \in \Gamma_{\alpha}} P(X \in \Gamma_{\alpha} | \theta = 0) = \inf_{c_{\alpha}: x \ge c_{\alpha}} P(X \ge c_{\alpha} | \theta = 0) = P(X \ge x | \theta = 0),$$

which coincides with the usual definition of p-values.

Definition. The q-value of an observed statistic X=x is defined as

$$\operatorname{q-value}(x) = \inf_{\Gamma_\alpha: x \in \Gamma_\alpha} \operatorname{pFDR}(\Gamma_\alpha) = \inf_{\Gamma_\alpha: x \in \Gamma_\alpha} P(\theta = 0 | X \in \Gamma_\alpha).$$

In other words, the above definition says the q-value is a measure of the strength of an observed statistic with respect to the pFDR; it is the minimum pFDR that can occur when rejecting a statistic with value x for the set of nested significance regions.