
STAT 689: Large-scale and high-dimensional statistical inference Fall 2024

Lecture 9

1 E-values
E-value is a recently proposed notion aiming to replace p-value in some statistical inference problems.

1.1 Definition
Consider a hypothesis H0 that includes a set of probability measures. Suppose we have observed the data X,
where X follows some distribution from H0 under the null.

Definition (e-value). A non-negative random e is called an e-value for testing H0 if

sup
P0∈H0

EP0 [e(X)] ≤ 1,

where EP0 [e(X)] means the expectation of e(X) for X ∼ P0.

Definition (p-value). A random variable p is called a p-value for testing H0 if

sup
P0∈H0

PP0(p(X) ≤ x) ≤ x

for all x. In other words, p(X) follows a super-uniform distribution for X ∼ P0 with any P0 in H0.

We can construct a p-value through an e-value. Specifically, given an e-value e, we simply let p = 1/e.

Exercise 9.1: Show that p = 1/e is a p-value according to the above definition.

1.2 Constructing e-values: Bayes factors
In Bayes hypothesis testing problem, we have

H0 = {pθ|θ ∈ Θ0} versus H1 = {pθ|θ ∈ Θ1}.

Let Gi be a prior distribution on Θi for i = 0, 1. The Bayes factor collects the evidence in factor of H1 and is
defined as

BF = pG1(X)
pG0(X) ,

where pGi(X) =
∫

Θi
pθ(X)dGi(θ) for i = 0, 1. We reject the null if this ratio is large enough. The Bayes

factor is, in general, not an e-value. In some simpler cases, however, we can obtain e-values. Suppose we have
a simple null hypothesis H0 = {p0} and H1 = {pθ|θ ∈ Θ1}. The Bayes factor simplifies to

BF = e(X) = pG1(X)
p0(X) .

Clearly, e(X) ≥ 0 and

Ep0 [e(X)] =
∫

e(x)p0(x)dx =
∫

pG1(x)dx =
∫ ∫

Θ1

pθ(x)dG1(θ)dx =
∫

Θ1

∫
pθ(x)dxdG1(θ) = 1.

Thus, Bayes factors can be used to obtain e-values.
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1.3 Constructing e-values: reverse information projection
We now discuss another way to construct e-values. Recall that for two distributions P, Q with the densities
p, q, the Kullback–Leibler (KL) divergence is defined as

D(P∥Q) = EX∼P log p(X)
q(X) .

Definition. Given G1, we define

G∗
0 = argminG0D(pG1∥pG0),

where the minimization is over all priors on Θ0. Then, pG∗
0

is the reverse information projection of pG1 on
the set {pG : G is a prior on Θ0}.

Theorem (Grunwald et al., 2019, Theorem 1). If G∗
0 exists, then e(X) = pG1(X)/pG∗

0
(X) is an e-value,

in the sense that

E0[pG1(X)/pG∗
0
(X)] ≤ 1.

Moreover, it achieves

maxEX∼pW1
[log e(X)]

where the maximum is over all the e-values.

The quantity EX∼pW1
[log e(X)] can be viewed as an analog of power. But why should we look to maximize

the logarithm of e rather than the expectation of e itself? One answer comes from an interpretation of
e-values via betting; see the discussions in Section 1.4.

1.4 A betting perspective
We turn the hypothesis testing problem between two hypotheses, H0 and H1, into a betting game. At
each turn, you may choose the amount to stake, and for each dollar bet, the payoff is equal to the e-value
e(x), dependent on the outcome X. Under the null, suppose that E0[e(X)] = 1. So you don’t make money
on average. Now, if the alternative is true, suppose that E1[e(X)] > 1. This situation corresponds to a
game in which you think the alternative hypothesis is true, and under this regime, the payoff e(X) − 1 is
positive. What is the long-term wealth you should expect to have at time T? In general, the wealth should
be exponential in T . Taking the logarithm, we should expect the total wealth to be like T log e(x). In light of
this, it is not unreasonable to maximize E1[log e(X)] = 1. This strategy is known as Kelly Gambling or the
Kelly Criterion.

1.5 Safe testing
E-values based on n observations. In reality, we are given a set of independent samples X1, . . . , Xn. In
this case, the e-value can be defined as

e(X) =
n∏

i=1
e(Xi),

where X = (X1, . . . , Xn). Below for any p0 ∈ H0, we write P0 = Pp0 and E0 = Ep0 .

Safe testing. The safe testing procedure rejects the null when e(X) ≥ 1/α. Under the null, the safe testing
procedure controls the Type I error at level α as

P0(e(X) ≥ 1/α) ≤ αE0[e(X)] ≤ α,
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where the first inequality is due to Markov’s inequality. In comparison, the Neyman-Pearson (NP) test rejects
the null if e(X) ≥ cα for cα such that

P0(e(X) ≥ cα) = α.

As a result, the safe testing procedure necessarily leads to power loss as compared to the NP test.

Exercise 9.2: Let X = (X1, . . . , Xn) with Xi ∼ N(µ, 1) independently. Consider the problem of testing

H0 : µ = 0 versus H1 : µ = µ1.

Compute e(X). Find cα in the NP test and compare it with the threshold 1/α in safe testing when α = 0.05.

1.6 Advantages of using e-values
Although safe testing incurs power loss, e-values offer some unique advantages as compared to p-values.

• They allow us to perform sequential inference and gradual appraisal of information and evidence.

• E-values concern expectations, which are robust to data dependence, whereas tail bounds (associated
with the use of p-values) are not.

• They are easy to combine to aggregate results.

1.7 Safety under optional continuation
The main purpose of e-values is to address the issue of optional continuation, which involves deciding whether
to collect new data and conduct further testing based on previous test outcomes. For instance, if research
group A tests a new medication and gets a “promising but inconclusive” result, another group, B, might
decide to conduct their own test with new data. Subsequently, group C might observe the results of group B
and decide to collect data for further testing. To perform hypothesis testing in this scenario, it is necessary to
combine results from multiple tests in a statistically valid manner. Using p-value-based methods is inadequate
because the experiments are not independent - each subsequent group decides to collect data and conduct
testing only after seeing the results of previous groups. Consequently, combining the data and recalculating
the p-value as if all the data were fixed in advance leads to misleading results and can be considered p-hacking.
E-values enable the use of safe tests, which are valid in the optional continuation setting. This allows
researchers to monitor results and stop whenever they want while still ensuring statistically valid results and
preserving Type I error guarantees.

Suppose we have data (X1, Z1), (X2, Z2), . . . coming in batches of size n1, n2, and so on. We can view Zi as
side information, such as how much money we have to continue data collection. Define Nt =

∑t
i=1 ni as the

amount of data collected after the t-th batch. A safe testing procedure works as follows. We first compute an
e-value e1 = e(X1, . . . , Xn1). If the outcome is within a certain range (e.g., promising but not conclusive)
and (Z1, . . . , Zn1) have certain values (the budget is enough to collect more data). Then we move to collect
more data (Xn1+1, Zn1+1), . . . , (XN2 , ZN2) and calculate the corresponding e-value e2 = e(Xn1+1, . . . , XN2).
Otherwise, we stop. Let T be the number of data batches collected when we do stop. We report the final
result as

E :=
T∏

i=1
ei.

Let Ft be a filtration generated by (X1, Z1), (X2, Z2), . . . , (XNt
, ZNt

). Define et as a conditional e-value if et

is non-negative, measurable with respect to Ft and satisfies that

E0[et|Ft−1] ≤ 1.

Theorem. With e1, e2, . . . defined above, the process

Vt =
t∏

i=1
ei
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is a non-negative supermartingale under the null.

Proof. Note that
E0[Vt|Ft−1] = Vt−1E0[et|Ft−1] ≤ Vt−1.

Now, suppose T is a stopping time. By the optional stopping theorem,

E0[VT ] ≤ 1.

As a consequence, VT is an e-value, and thus, we can use it for testing.

Ville’s Inequality. Under any p0 ∈ H0, we have

P0

(
sup

t
Vt ≥ 1/α

)
≤ α.

Proof. Define τ = inf{t : Vt ≥ 1/α}. Then, τ is a stopping time as {τ ≤ t} ∈ Ft. By the optional stopping
theorem,

1 = E0[V0] ≥E0[Vτ ]
=E0[Vτ |τ = ∞]P0(τ = ∞) + E0[Vτ |τ < ∞]P0(τ < ∞)
≥E0[Vτ |τ < ∞]P0(τ < ∞).

As Vτ ≥ 1/α, we have E0[Vτ |τ < ∞] ≥ 1/α. Therefore,

P0

(
sup

t
Vt ≥ 1/α

)
≤ P0(τ < ∞) ≤ 1

E0[Vτ |τ < ∞] ≤ α.

In summary, combining e-values with arbitrary stop/continue strategy and rejecting the null when the final
VT has VT ≥ 1/α is safe since

P0(VT ≥ 1/α) ≤ P0

(
sup

t
Vt ≥ 1/α

)
≤ α,

which suggests that the Type-I error is at most α.

2 E-values in multiple testing
Suppose we observe n e-values e1, . . . , en corresponding to the hypotheses H1, . . . , Hn. The α-level e-BH
procedure involves sorting the e-values in decreasing order as e(1) ≥ · · · ≥ e(n) and rejecting the hypotheses
associated with the k̂ largest e-values, where

k̂ := max
{

1 ≤ i ≤ n : e(i) ≥ n/(iα)
}

.

Notice that P (1/ei ≤ t) ≤ t by Markov’s inequality, which indicates that 1/ei is super-uniform. Thus, the
e-BH procedure is simply the BH procedure applied to the p-values {1/ei}n

i=1. An advantage of the e-BH
procedure is that it controls FDR at level α even under unknown arbitrary dependence among the e-values.

Theorem. The e-BH procedure has FDR at most n0α/n regardless of the dependence among the e-values.

Proof. Note that

FDP =
n∑

i=1

1{ie(i) ≥ n/α, H(i) is under the null}
1 ∨ k̂

≤
n∑

i=1

1{ie(i) ≥ n/α, H(i) is under the null}
1 ∨ i

≤
n∑

i=1
1{H(i) is under the null}

αe(i)

n
= α

n

∑
i∈N0

ei.
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method m(t) Ri(t) method m(t) Ri(t)
BH nt 1{pi ≤ t} BC 1 +

∑n
i=1 1{pi ≥ 1 − t} 1{pi ≤ t}

GBH ng(t) 1{φi(pi) ≤ t} GBC 1 +
∑n

i=1 1{φi(1 − pi) ≤ t} 1{φi(pi) ≤ t}
ST nπλ

0 t 1{pi ≤ t}

Table 1: The selections of m(t) and Ri(t) for different methods.

As E0[ei] ≤ 1, we have

FDR = E[FDP] ≤ n0α/n.

Remark. From the proof, we see that to control the FDR, we only require

E

[ ∑
i∈N0

ei

]
≤ n,

which is weaker than E0[ei] ≤ 1 for all i ∈ N0.

Exercise 9.3: There is an interesting connection between the BH and e-BH procedures. Suppose we observe
a p-value pi for hypothesis Hi. Recall the threshold in the BH procedure:

T = sup
{

0 < t ≤ 1: nt

1 ∨ R(t) ≤ α

}
.

Define the e-value associated with Hi to be

ei = 1
T

1{pi ≤ T}.

Let SBH be the set of rejections obtained through the BH procedure at the FDR level α, and let SeBH
represent the set of rejections obtained from the e-BH procedure at the same FDR level α, with the e-values
defined above. Show that SBH = SeBH.

More generally, suppose we reject the ith hypothesis if Ri(T ) = 1 with

T = sup
{

t ∈ D : m(t)
1 ∨

∑n
j=1 Rj(t) ≤ α

}
.

Here D denotes the domain of the threshold, m(t) is an estimate of the number of false discoveries, and∑n
j=1 Rj(t) is the total number of rejections, with Rj(t) being the indicator function that indicates whether

the jth hypothesis should be rejected or not at the threshold t. The corresponding e-BH procedure is defined
based on the e-values ei = nRi(T )/m(T ) for 1 ≤ i ≤ n. The selections of m(t) and Ri(t) for different methods
are summarized in Table 1.

2.1 Combining e-values
As we have seen, many procedures are equivalent to the e-BH procedure with a suitably defined set of e-values.
Suppose we have L such procedures. Each procedure (performed at level α) is equivalent to the corresponding
e-BH procedure applied to the set of e-values {el

i : i ∈ [n]}L
l=1 for l = 1, 2, . . . , L and [n] = {1, 2, . . . , n}. Here

el
i is the e-value associated with the hypothesis Hi from the lth procedure. Suppose∑

i∈N0

E[el
i] ≤ n.

So, each of these procedures controls the FDR at level α. Now let

ei =
L∑

l=1
wl,ie

l
i
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be the weighted e-value, where wl,i ≥ 0 is the aggregating weight. If
∑L

l=1 maxi wl,i ≤ 1, the weighted
e-values satisfy ∑

i∈N0

E[ei] ≤ n.

As a result, the e-BH procedure applied to {ei} controls the FDR at the desired level.

Proof.

∑
i∈N0

E[ei] =
∑

i∈N0

L∑
l=1

wl,iE[el
i]

≤
∑

i∈N0

L∑
l=1

max
i

wl,iE[el
i]

=
L∑

l=1
max

i
wl,i

∑
i∈N0

E[el
i]

≤
L∑

l=1
max

i
wl,in

≤ n.

2.2 Assembling e-values
Suppose we have L sets of e-values {el

i : i ∈ Gl, |Gl| = nl} from L different datasets, where ∪lGl = [n],
Gl1 ∩ Gl2 = ∅ if l1 ̸= l2, el

i is associated with the hypothesis Hi and∑
i∈Gl∩N0

E[el
i] ≤ nl.

Thus, the e-BH procedure applied to {el
i : i ∈ Gl} would control the FDR within the lth dataset.

Let ei = wl,ie
l
i be the weighted e-value, where wl,i ≥ 0 is the assembling weight. If

∑L
l=1 nl maxi∈Gl

wl,i ≤ n,
the weighted e-values satisfy ∑

i∈N0

E[ei] ≤ n.

As a result, the e-BH procedure applied to {ei : i ∈ [n]} would control the overall FDR within the whole
dataset (which combines the L datasets together).

Proof.

∑
i∈N0

E[ei] =
L∑

l=1

∑
i∈Gl∩N0

wl,iE[el
i]

≤
L∑

l=1

∑
i∈Gl∩N0

max
i∈Gl

wl,iE[el
i]

=
L∑

l=1
max
i∈Gl

wl,i

∑
i∈Gl∩N0

E[el
i]

≤
L∑

l=1
max
i∈Gl

wl,inl

≤ n.
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Figure 1: An illustration of aggregating e-values from different procedures and assembling e-values from
different datasets.
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