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ABSTRACT
This article proposes a new procedure to validate the multi-factor pricing theory by testing the presence of
alpha in linear factor pricing models with a large number of assets. Because the market’s inefficient pricing
is likely to occur to a small fraction of exceptional assets, we develop a testing procedure that is particularly
powerful against sparse signals. Based on the high-dimensional Gaussian approximation theory, we propose
a simulation-based approach to approximate the limiting null distribution of the test. Our numerical studies
show that the new procedure can deliver a reasonable size and achieve substantial power improvement
compared to the existing tests under sparse alternatives, and especially for weak signals.
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1. Introduction

As one of the most fundamental results in empirical finance,
the factor pricing model postulates how financial returns are
related to market risks and has many critical applications such
as portfolio selection, fund performance evaluation, and cor-
porate budgeting. There are several well-known factor models,
including the capital asset pricing model (CAPM) proposed by
Sharpe (1964) and Lintner (1965), the arbitrage pricing theory
(APT) model by Ross (1976), the Fama-French three-factor
model by Fama and French (1993), and the Fama-French five-
factor model by Fama and French (2015).

Let yit be the excess return of the ith asset at time t and Xt =
(x1t , . . . , xrt)� ∈ R

r×1 be a vector of observable factors such
as tradable market risk factors. The form of the factor pricing
model is given by

yit = αi + β�
i Xt + uit , i = 1, 2, . . . , N, t = 1, 2, . . . , T,

(1)

where βi ∈ R
r×1 is a vector of factor loadings and uit represents

the idiosyncratic error which is assumed to be independent of
the factors Xt with E[uit] = 0 and cov(uit , ujt) = σij for i, j =
1, . . . , N. The multi-factor pricing theory implies that the vector
of intercepts α = (α1, . . . , αN)� should be zero. Therefore, to
empirically validate the factor pricing theory, researchers often
consider the problem of testing

H0 : α = 0 versus Ha : α �= 0.

An example of a commonly used test for this problem is the exact
multivariate F-test proposed by Gibbons, Ross, and Shanken
(1989), which assumes Gaussian errors and N < T. However,
its application has been confined to a relatively small number of
portfolios using monthly returns observed over a relatively long
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period. With the advent of modern financial markets, where
thousands of securities are traded daily, there is a need for
tests that can handle a large or diverging number of assets N.
Consequently, recent efforts have focused on developing tests
that allow N to be larger than the time dimension T, given
the popularity of high-dimensional factor models. Some notable
attempts along this direction include Pesaran and Yamagata
(2012), Gungor and Luger (2013), Pesaran and Yamagata (2017),
Ma et al. (2020), and Giglio, Liao, and Xiu (2021).

The above methods are all sum-of-squares types, generally
having good power performance against dense alternatives. For
instance, Pesaran and Yamagata (2012, 2017) proposed Wald-
type tests for validating the capital asset pricing model based
on the diagonal elements of the sample covariance matrix.
However, according to Fan, Liao, and Yao (2015), inefficient
market pricing is more likely to occur in exceptional assets rather
than systematic mispricing of the entire market. Therefore, it is
desirable to develop a test that has good power against sparse
alternatives. The Wald-type test can suffer from low power
when α is a sparse vector (i.e., sparse alternatives). To address
this issue, Fan, Liao, and Yao (2015) proposed adding a power
enhancement component to the Wald test (referred to as the
FLY test) to improve its power under sparse alternatives. The
power enhancement component approaches zero under the null
hypothesis (so it does not affect the null distribution of the
test asymptotically) but diverges and dominates the Wald statis-
tic under some specific regions of sparse alternatives. Another
effective way to deal with sparse alternatives is the maximum
type test proposed by Gungor and Luger (2016), although they
did not provide an in-depth analysis of the test. Recently, Feng
et al. (2022) re-examined the maximum type statistic and proved
its asymptotic null distribution to be the Type I extreme value
distribution.

© 2023 American Statistical Association
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In general, the maximum type statistic only considers the
largest entry of α and is not adaptive to the unknown spar-
sity level. This article proposes a novel testing procedure that
overcomes the limitations of existing methods and achieves
considerable power improvement. The new test is designed to

1. be adaptive to the unknown sparsity level;
2. borrow the cross-sectional dependence information to boost

the statistical power.

These features enable the test to outperform existing solutions
over a wide range of settings. To motivate our approach, we
derive a likelihood ratio test (LRT) under the assumption of joint
normality for the errors against a sparse alternative that assumes
precisely k nonzero components in α. The resulting test statistic
captures both the sparsity level of α and the cross-sectional
dependence via the error precision matrix. Unfortunately, com-
puting the test statistic involves solving a set optimization prob-
lem with complexity O(Nk), which is computationally infeasible
for moderate k. To mitigate this issue, we propose replacing the
error precision matrix with a diagonal matrix in the test statistic,
which reduces computational complexity to O(N log N) for any
fixed k.

An important consideration in this framework is how to
select the appropriate number of nonzero components k that
are adaptive to the signals. We propose choosing k to maximize
the standardized test statistic, which draws inspiration from the
literature on adaptive testing (Ingster 1993; Fan 1996; Donoho
and Jin 2004). To implement the testing procedure, we develop
a simulation approach to approximate the empirical null distri-
butions of the test statistics, based on recent high-dimensional
Gaussian approximation theory.

For a high-dimensional Central Limit Theorem (CLT) and
bootstrap theory for iid sequences, we refer readers to Cher-
nozhukov, Chetverikov, and Kato (2017), while for a CLT for
high-dimensional time series, we refer readers to Chang, Chen,
and Wu (2023) (also see Zhang and Cheng 2018; Zhang and
Wu 2018). In addition to the problem considered in this article,
Gaussian approximation theory has been applied to other large-
scale testing problems, such as inference for high-dimensional
mean (Chang et al. 2017), high-dimensional covariance matri-
ces (Chang et al. 2017), high-dimensional precision matrices
(Chang, Yao, and Zou 2018), high-dimensional white noise
testing (Chang, Yao, and Zhou 2017), and inference for high-
dimensional linear regression (Zhang and Cheng 2017; Dezeure,
Bühlmann, and Zhang 2017).

We demonstrate theoretically that our simulation approach
accurately approximates the null distribution and that the pro-
posed test is consistent against a class of sparse alternatives.
While our procedure is motivated by the LR test derived under
the joint normality assumption of the errors, the validity of our
approach does not depend on the Gaussian assumption. Our
empirical results show that the proposed procedure maintains
reasonable size and achieves considerable power improvement
compared to existing tests under weak and sparse alternatives.
Furthermore, unlike other tests, the number of factors in our
proposed test can diverge as N and T increase.

The article is organized as follows. Section 2 introduces the
test statistic and its adaptive version, and proposes a simulation-
based procedure to approximate the limiting null distributions.

Section 3 investigates the asymptotic properties of the tests.
Sections 4 and 5 are dedicated to simulation studies and real data
analysis, respectively. Technical arguments are presented in the
Appendix.

Finally we introduce some notation that will be used through-
out the article. For a ∈ R, let �a� be the integer part of a. For
a vector z = (z1, . . . , zN) ∈ R

N and q > 0, define |z|q =
(
∑N

i=1 |zi|q)1/q with |z| = |z|2. Set |z|0 = ∑N
i=1 1{zi �= 0}

which is the number of nonzero elements in z, and |z|∞ =
max1≤i≤N |zi|. For V = (vij) ∈ R

N×N , define the matrix
norms: ‖V‖1 = max1≤j≤N

∑N
i=1 |vij|, ‖V‖2 = max|z|=1 |Vz|,

‖V‖∞ = max1≤i≤N
∑N

j=1 |vij| and |V|∞ = max1≤i,j≤N |vij|.
Write diag(V) = diag(v11, . . . , vNN). Let ‖ ·‖0 be the cardinality
of a set. For S ⊆ {1, . . . , N}, let VS,S be the submatrix of V
that contains the rows and columns in S. Similarly, define VS,−S
as the submatrix of V with the rows in S and the columns in
{1, . . . , N} \ S.

2. Methodology

2.1. Test Statistics

Let Yt = (y1t , . . . , yNt)� and β = (β1, . . . , βN)�. Then the
factor pricing model (1) can be written in the matrix form as

Yt = α + βXt + Ut , t = 1, 2, . . . , T, (2)

where Ut = (u1t , . . . , uNt)� is a martingale difference sequence
satisfying E(Ut|Ft−1) = 0 with Fs denoting the σ -field gen-
erated by {Ut}t≤s. Note that {α ∈ R

N : α �= 0} = ∪N
k=1Ak,

where Ak = {α ∈ R
N : |α|0 = k}. To motivate the subsequent

derivations, we consider the testing problem:

H0 : α = 0 versus Ha,k : α ∈ Ak

where the sparsity level k under the alternative is assumed to
be known as a priori. In Section 2.3, we shall introduce a data-
driven procedure to select k.

Under the Gaussian assumption Ut ∼ N(0, �), the negative
log-likelihood (up to a constant term) is equal to

L(α; β ; �) = 1
2

T∑
t=1

(Yt − α − βXt)
��(Yt − α − βXt),

where � = �−1 = (γi,j) is the precision matrix. Fixing � and
using Lemma 2 in the Appendix, we derive the likelihood ratio
test (LRT) for testing H0 against Ha,k, which takes the form of

T max
‖S‖0=k

{�α̂}�S �−1
S,S {�α̂}S.

Define X = (X1, . . . , XT) ∈ R
r×T , Y = (Y1, . . . , YT) ∈

R
N×T and 1 = (1, . . . , 1)� ∈ R

T×1, where Ȳ = T−1 ∑T
t=1 Yt

and X̄ = T−1 ∑T
t=1 Xt . Note that the MLE of α can be expressed

as

α̂ = (̂α1, . . . , α̂N)� = Ȳ − β̂X̄,

where α̂i = T−1 ∑T
t=1 yit{1 − (Xt − X̄)�W} with W =

{T−1 ∑T
t=1(Xt − X̄)(Xt − X̄)�}−1X̄ ∈ R

r×1. Here β̂ is the
MLE of β given by β̂ = (Y − Ȳ1�)(X − X̄1�)�

{
(X − X̄1�)
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(X − X̄1�)�
}−1. Under the independence between Ut and Xt , it

can be shown that the variance of α̂i converges in probability
to σ 2

i = T−1(1 + EX�
t �−1

X EXt)σii, which can be estimated
consistently by σ̂ 2

i = T−2(1 + X̄�W
)∑T

t=1 û2
it , where ûit =

yit − α̂i − β̂
�
i Xt .

Next, we introduce a procedure to estimate the unknown
precision matrix. Following Fan, Liao, and Yao (2015), we define
a screening set:

ŝ = {i : |̂αi| > σ̂iδN,T , i = 1, . . . , N},

where δN,T = C log(log T)
√

log N with C being some positive
constant. Under a minimal signal assumption, we can prove the
sure screening property (see Lemma 5 in the Appendix) that
ŝ contains all the nonzero components of α with probability
converging to one. Set

α̃ = α̂I(ŝ) =
(
α̂1I(|̂α1| > σ̂1δN,T), . . . , α̂NI(|̂αN | > σ̂NδN,T)

)�

and let Û = Y − α̃1� − β̂X and �̂U = ÛÛ�/T = (̂σuij)
N
i,j=1.

Further write V = diag1/2(�) and R as the correlation matrix
of �. Accordingly, we define V̂ = diag1/2(�̂U) and R̂ as the
sample correlation matrix. Following Chen, Xu, and Wu (2013)
and Shu and Nan (2019), we use a slightly modified version of
the graphical lasso estimator:

K̂ρ = arg min

>0

{tr(
R̂) − log det(
) + ρ|
−|1}, (3)

where the minimization is over the set of positive-definite
matrices 
 = (ψi,j), ρ is a nonnegative tuning parameter,
and |
−|1 = ∑

1≤i �=j≤N |ψi,j|. Then we estimate � by �̂ =
V̂−1K̂ρV̂−1.

Remark 1. To estimate the sparse precision matrix, we can also
use the nodewise Lasso (Meinshausen and Bühlmann 2006) or
the Constrained l1-Minimization for Inverse Matrix Estimation
(CLIME) (Cai, Liu, and Luo 2011).

Combining the above derivations, we obtain the test statistic
in the form of

GT(k) = T max
‖S‖0=k

{�̂α̂}�S �̂−1
S,S {�̂α̂}S. (4)

However, computing the value of GT(k) is challenging as it
involves a set optimization problem with computational com-
plexity of order O(Nk). This complexity makes computation
prohibitive even for moderate values of k. In the following, we
propose an approach to address this issue.

2.2. Modified Tests

The computational cost of (4) is high, especially when combined
with the simulation-based approach in Section 2.4. To reduce the
computational burden, we propose a modified test by replacing
�̂S,S with diag(�̂S,S), which includes only the diagonal elements
of �̂. This eliminates the need for best subset selection, signif-
icantly improving computational efficiency. The resulting test
statistic is given by

G̃T(k) = T max
‖S‖0=k

{�̂α̂}�S diag−1(�̂S,S){�̂α̂}S. (5)

Let �̂α̂ = (̂zi)
N
i=1 and �̂ = (γ̂i,j)

N
i,j=1. Sort the values |̂zj|2/γ̂j,j

in descending order, say |̂zj∗1 |2/γ̂j∗1 ,j∗1 ≥ |̂zj∗2 |2/γ̂j∗2 ,j∗2 ≥ · · · ≥
|̂zj∗N |2/γ̂j∗N ,j∗N . Direct calculation yields that

G̃T(k) = T
k∑

i=1

ẑ2
j∗i

γ̂j∗i ,j∗i
.

Therefore, the maximization in (5) can be solved using sorting
algorithms, which leads to the time complexity of the order
O(N log N) for any fixed k.

2.3. Selection of k and Adaptive Testing

In this section, we propose a data-dependent approach to select
k, inspired by the literature on adaptive testing. For clarity,
we focus on G̃T(k) but emphasize that the same idea applies
equally to GT(k). Let Ê[G̃T(k)] and v̂ar[G̃T(k)] be the estimates
of the mean and variance of G̃T(k) under the null, which can be
constructed using the simulation-based approach in Section 2.4.
Our idea is to find k which maximizes the standardized statistic,
that is,

k0 = arg max
1≤k≤K

G̃T(k) − Ê[G̃T(k)]√
v̂ar[G̃T(k)]

,

where K is a user-specified upper bound. The corresponding
adaptive test statistic is given by

G̃T(K) = G̃T(k0) − Ê[G̃T(k0)]√
v̂ar[G̃T(k0)]

= max
1≤k≤K

G̃T(k) − Ê[G̃T(k)]√
v̂ar[G̃T(k)]

.

2.4. A Simulation-based Approach

To approximate the sampling distributions of GT(k) and G̃T(k)
for k ≥ 1 and G̃T(K) under sparsity assumption, we propose
a simulation-based approach, which is closely related to the
multiplier bootstrap in Chernozhukov, Chetverikov, and Kato
(2017), Belloni and Oliveira (2018), and Chang, Chen, and Wu
(2023). A key step in deriving the simulation-based procedure is
to understand the estimation effect of β̂ in α̂. We note that

α̂ = Ȳ − β̂X̄ = α − T−1(U − Ū1�)(
X − X̄1�)�W + Ū

≈ α + T−1
T∑

t=1
Ut[1 − (Xt − X̄)��−1

X EXt] := α + Z̃,

where U = (U1, . . . , UT). Under the independence between
U and X, it can be shown that the covariance matrix of

√
TZ̃

converges in probability to (1+ ζ )� for ζ = EX�
t �−1

X EXt . The
core of the simulation approach is to construct a quantity using
simulated normal variables that approximates the distribution of
Z̃. The details of our procedure can be described as follow:

1. Generate a sequence of independent standard normal ran-
dom variables {εt}T

t=1 that are independent of the sample, and
let

Z̃∗ = T−1
√

1 + X̄��̂−1
X X̄

T∑
t=1

{(
Yt − Ȳ

) − β̂
(
Xt − X̄

)}
εt ,

where �̂X = T−1 ∑T
t=1(Xt − X̄)(Xt − X̄)�.
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2. Compute the simulation-based statistics for G̃T(k) as

G̃∗
T(k) = T max

‖S‖0=k
{�̂Z̃∗}�S diag−1(�̂S,S){�̂Z̃∗}S.

3. Repeat Steps 1–2 B times to get the 1 − α quantiles of
{G̃∗

T,j(k)}B
j=1, which are the simulation-based critical values

of G̃T(k).
3′. We estimate the mean and variance of G̃T(k) by

Ê[G̃T(k)] = B−1
B∑

j=1
G̃∗

T,j(k),

v̂ar[G̃T(k)] = B−1
B∑

j=1

⎧⎨
⎩G̃∗

T,j(k) − B−1
B∑

j=1
G̃∗

T,j(k)

⎫⎬
⎭

2

,

respectively. To approximate the distribution of the adaptive
test, we consider

G̃∗
T,j(K) = max

1≤k≤K

G̃∗
T,j(k) − Ê[G̃T(k)]√

v̂ar[G̃T(k)]
.

The 1 − α quantiles of {G̃∗
T,j(K)}B

j=1 will be the critical value
of our adaptive test.

3. Theory

3.1. Consistency under the Null

In this section, we study the theoretical properties of the pro-
posed tests and justify the validity of the simulation-based
approach. Define α(T) = supA∈F0−∞,B∈F∞

T
|P(A)P(B)−P(AB)|,

where F0−∞ and F∞
T denote the σ -algebras generated by

{(Xt , Ut) : t ≤ 0} and {(Xt , Ut) : T ≤ t}, respectively. Let
m = max

1≤i≤N
‖{γij, j �= i, 1 ≤ j ≤ N}‖0. For a random variable

ξ , we define its Orlicz norm to be ‖ξ‖ψγ1
= inf{q ≥ 0 :

E[ψγ1(|ξ |/q)] ≤ 1} with ψγ1(x) := exp(xγ1) − 1. To facilitate
the derivations, we make the following assumptions. Below we
let ci with 0 ≤ i ≤ 6 be some positive constants independent of
N and T.

Assumption 1.

(a) Suppose {Ut}T
t=1 is a sequence of martingale difference

sequence with E(Ut) = 0 and cov(Ut) = �, where
λmin(�) ≥ c1 > 0. Assume that there exists a sequence
of constants BT > 1 and a universal constant γ1 ≥ 1 such
that ‖uit‖ψγ1

≤ BT for all i and t. Moreover, assume that
sup1≤i,j≤N var(uitujt) < ∞, ‖�‖1 < ∞ and ‖�‖1 < ∞.

(b) Suppose {(Xt , Ut)}T
t=1 is α-mixing with the mixing coeffi-

cient α(t). There exist c2, c3 > 0 such that for all t ∈ Z
+,

α(t) ≤ exp(−c2tc3).

(c) Suppose {Xt}T
t=1 is strictly stationary and is independent of

{Ut}T
t=1. There exist ω > 0 and c4 > 0 with 3c−1

4 + c−1
3 > 1

such that

P(|xit| > s) ≤ exp
{−(s/w)c4

}
.

(d) Suppose λmin(�X) ≥ c5 > 0 and max
1≤i≤N

‖βi‖ < c6 for some
c5, c6 > 0.

Remark 2. In contrast to the iid assumption on {Ut}T
t=1 in

Assumption 4.1 (i) of Fan, Liao, and Yao (2015) and (A1) of
Feng et al. (2022), we relax this assumption in our article because
we use the high-dimensional CLT from Chang, Chen, and Wu
(2023) [see Theorem 7 therein]. Assumption 1(a) implies that
E{exp(|uit|γ1 B−γ1

T )} ≤ 2, which is equivalent to the condition
that the tail of uit satisfy P(|uit| > u) ≤ 2 exp

{
−uγ1 B−γ1

T

}
.

Assumption 1(b) (d) are identical to those in Fan, Liao, and Yao
(2015). Specifically, conditions (b) and (c) require the tail decay
and strong mixing assumptions, respectively, which allow us to
use Bernstein-type inequalities for weakly dependent sequences
in our technical proofs.

Denote CN,T,k = max
{

B2
Tk

2+6c3
c3 (log N)

1+2c3
c3 , B3

Tk10(log N)
7
2 ,

k
6−2c3

c3 (log N)
3−c3

c3
}

.

Theorem 1. Assume CN,T,k = o(T1/3) and k2(r3 +
r2m)(log NT)5/2/

√
T = o(1). Then under Assumption 1(a)–(d)

and the null hypothesis H0, we have

sup
υ≥0

∣∣∣∣P
(

G̃∗
T(k) ≤ υ

∣∣∣XT
1 , YT

1

)
− P

(
G̃T(k) ≤ υ

)∣∣∣∣ = op(1), (6)

where XT
1 = {X1, . . . , XT} and YT

1 = {Y1, . . . , YT}.

Theorem 2. Assume CN,T,k = o(T1/3) and K4(r3 +
r2m)(log NT)5/2/

√
T = o(1). Under Assumption 1(a)–(d) and

the null hypothesis H0, we have

sup
υ≥0

∣∣∣∣P
(
G̃∗

T(K) ≤ υ

∣∣∣XT
1 , YT

1

)
− P

(
G̃T(K) ≤ υ

)∣∣∣∣ = op(1), (7)

where XT
1 = {X1, . . . , XT} and YT

1 = {Y1, . . . , YT}.

Remark 3. If the Ut ’s are assumed to be iid, then the condition
CN,T,k = o(T1/3) in Theorems 1 and 2 can be relaxed to
k(log NT/k)7/3 = o(T1/3). However, if we allow the Ut ’s to be
alpha-mixing in Theorems 1 and 2, a more restricted condition
on the order of k relative to T is required.

It is important to note that our theoretical results allow for
the number of factors r to grow slowly with N and T. However,
the restrictions on k and K in Theorems 1–2 cannot be easily
relaxed due to the use of the Gaussian approximation theory
in Chang, Chen, and Wu (2023). Nevertheless, our numerical
results demonstrate that the simulation-based approach per-
forms reasonably well even for large values of K.

3.2. Power Analysis

Below we study the power properties of the proposed testing
procedures. To proceed, we impose the following conditions.

Assumption 2.

(a) maxj1≤···≤jk
∑k

i=1 γji,jiα
2
ji ≥ (2k + δ) log(N) for some δ > 0.
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(b) |α|0 = �Nκ� for some 0 ≤ κ < 1/4 and the nonzero loca-
tions are randomly and uniformly drawn from {1, 2, . . . , N}.

(c) Let diag−1/2(�)�diag−1/2(�) = (φi,j)
N
i,j=1. Assume that

max1≤i<j≤N |φi,j| ≤ c0 < 1.

Define C̃∗
α = inf{υ > 0 : P(G̃∗

T(k) ≤ υ|XT
1 , YT

1 ) ≥ 1 − α}
as the simulation-based critical value. Let C̃∗

α be the analogous
quantity defined based on G̃∗

T(K). The following theorem estab-
lishes the consistency of the testing procedures.

Theorem 3. Assume that CN,T,k = o(T1/3) and k2(r3 +
r2m)

(
log NT

)5/2
/
√

T = o(1). Then under Assumptions 1 and
2(a)–(c), we have

P(G̃T(k) > C̃∗
α) → 1. (8)

Moreover, suppose Assumption (a) holds by replacing k with K
and K4(r2 + rm)

(
log NT

)5/2
/
√

T = o(1). Then we have

P(G̃T(K) > C̃∗
α) → 1. (9)

4. Numerical Studies

4.1. Competing Methods

We carry out simulation experiments to evaluate the finite sam-
ple performance of our tests. As a comparison, we also consider
the FLY test of Fan, Liao, and Yao (2015), the PY test of Pesaran
and Yamagata (2017), and the testing procedures recently pro-
posed by Feng et al. (2022). Specifically, we consider the adjusted
Wald-statistic defined as

TFLY = T(1 − X̄�W̃)̂α��̂T−1
α̂ − N(T−r−1)

T−r−3
T−r−1
T−r−3

√
2N(T−r−2)

T−r−5
(
1 + (N − 1)ρ̃2

N,T
) ,

where W̃ = ( 1
T

∑T
t=1 XtX�

t
)−1X̄ ∈ R

r×1, and �̂T is a thresh-
olding covariance estimator (see e.g., Antoniadis and Fan 2001;
Rothman, Levina, and Zhu 2009).

Pesaran and Yamagata (2012, 2017) proposed the modified
Wald-type test:

TPY =
N−1/2 ∑N

i=1

(
t2
i − T−r−1

T−r−3

)
T−r−1
T−r−3

√
2(T−r−2)

T−r−5
(
1 + (N − 1)ρ̃2

N,T
) ,

where

t2
i = α̂2

i
(
1�MX1

)
Û�

i· Ûi·/(T − r − 1)
, V̂U =

T∑
t=1

ÛtÛ�
t /(T − r − 1),

ρ̃2
N,T = 2

N(N − 1)

N∑
i=2

i−1∑
j=1

ρ̂2
ijI

(
(T − r − 1)ρ̂2

ij ≥ �N,α
)

,

with Yi· = (yi1, . . . , yiT)�, Ûi· = (̂ui1, . . . , ûiT)� = MX
(
Yi· −

α̂i1
)
, ρ̂ij = Û�

i· Ûj·√
Û�

i· Ûi·
√

Û�
j· Ûj·

, Ût = Yt − α̂� − β̂Xt and √
�N,α =

�−1(1 − pN/2). Here � is the standard normal distribution
function and pN = 0.1/(N − 1). Feng et al. (2022) found that
the maximum type statistic (Gungor and Luger 2016) defined as

TMAX = max
1≤i≤N

t2
i .

follows an extreme value distribution. Moreover, Feng et al.
(2022) combined the TPY and TMAX tests to obtain a combina-
tion test TCOM that is capable of detecting both sparse and dense
alternatives. See Feng et al. (2022) for the details.

4.2. Simulation Results

Following the simulation studies of Pesaran and Yamagata
(2017) and Feng et al. (2022), the experiments are designed to
mimic the commonly used Fama-French three-factor model,
where the factors Xt have strong serial correlation and hetero-
geneous variance. In particular, we consider the model

yit = αi + β�
i Xt + uit , i = 1, 2, . . . , N, t = 1, 2, . . . , T.

Here βi = (βi1, βi2, βi3)� for 1 ≤ i ≤ N and Xt =
(x1t , x2t , x3t)� for 1 ≤ t ≤ T, which corresponds to the three
factors in the Fama-French model, namely the market factor, the
small minus big (SMB) and high minus low (HML). Each factor
follows a GARCH(1, 1) process, and all the coefficients are the
same as those in Pesaran and Yamagata (2017). Specifically,

Market factor: x1t = 0.53 + 0.06x1,t−1 + h1/2
1t ζ1t ,

SMB factor: x2t = 0.19 + 0.19x2,t−1 + h1/2
2t ζ2t ,

HML factor: x3t = 0.19 + 0.05x3,t−1 + h1/2
3t ζ3t ,

where ζjt ’s are simulated from a standard normal distribution,
and the variance terms hjt are generated from

Market factor: h1t = 0.89 + 0.85h1,t−1 + 0.11h1t−1ζ
2
1t−1,

SMB factor: h2t = 0.62 + 0.74h2,t−1 + 0.19h2t−1ζ
2
2t−1,

HML factor: h3t = 0.80 + 0.76h3,t−1 + 0.15h3t−1ζ
2
3t−1.

Similar to Pesaran and Yamagata (2017) and Feng et al.
(2022), the above process is generated over the periods t =
−49, . . . , 0, 1, . . . , T with xj,−50 = 0 and hj,−50 = 1 for any
j = 1, 2 and 3. We discard the first 50 observations and use the
data from time 1 to time T to evaluate the performance of the
tests.

Following Pesaran and Yamagata (2017) and Feng et al.
(2022), to capture the main features of the individual asset
returns and their cross-correlations, we set the idiosyncratic
errors to be

Ut = �
1/2
U εt ,

and consider three types of distribution for εt as follows

1. εt ∼ N(0, IN), t = 1, 2, . . . , T;
2. εit

iid∼ t(3)/
√

3, i = 1, 2, . . . , N, t = 1, 2, . . . , T;
3. εt consists of N independent ARCH processes, that is, each

component process is of the form εi,t = σi,tei,t , where
the ei,t are independent random variables following N(0, 1)

or t(3)/
√

3, and σi,t = γ0 + γ1ε
2
i,t−1 with γ0 and γ1

generated from, respectively, the uniform distributions on
(0.25, 0.5) and (0, 0.5) independently for different compo-
nent processes.



6 Q. XIA AND X. ZHANG

Meanwhile, the factor loadings βi1, βi2, and βi3 are gen-
erated independently from the uniform distributions on
(0.2, 2), (−1, 1.5) and (−1.5, 1.5), respectively.

To better understand the power performance of all the meth-
ods under different sparsity levels, we first present a small
numerical study to investigate the power behavior when k =
1, 5, 10, and 15, and T = 100, N = 100. We focus on the AR(1)
covariance structure �U = (

σij
)N

i,j=1 with σij = 0.6|i−j| and � =
�−1

U . The nonzero entries of α are equal to αi = ωi
√

a log(N)/T,
where ωi are i.i.d. random variables with P(ωi = ±1) = 1/2.
Figure 1 shows the power curves as a function of the signal
strength parameter a. The results clearly indicate that the pro-
posed test outperforms the other tests in all cases considered.
In particular, the COM, PY, and FLY tests are more sensitive to
dense signals, while the MAX test performs better than these
tests for sparse signals. Notably, the power of G̃T(K) with K > 1
is higher than that of G̃T(1), suggesting that it is beneficial to
choose a larger value of K in practice. It should be noted that
while the restrictions on k and K in our theoretical results cannot
be relaxed, the simulation-based approach performs reasonably
well even when K takes large values, as suggested by our numer-
ical results.

Next, we consider the two cases for the error covariance �U :

1. In the first case, we assume �U = �1/2R�1/2. Similar to
Pesaran and Yamagata (2017) and Feng et al. (2022), we let
� = diag(σ11, . . . , σNN) with the diagonal entries σii drawn
rom the uniform distribution on (1, 2). We set the correlation
matrix of Ut to be

R = IN + bb� − diag(b)2,

where b = (b1, . . . , bN)�. The first and the last
⌊

Nδγ
⌋

with δγ (= 1/4, 1/2, 3/5) elements of b are drawn from
the uniform distribution on (0.7, 0.9) to generate different
degrees of error cross-sectional dependence, where δγ = 1/4
corresponds to the case of weak correlation and δγ = 3/5
represents strong correlation. The remaining elements are set
to 0.

2. In the second case, we modify the example in Section 5.3 of
Pesaran and Yamagata (2017). In particular,

�U = LL� + (IN − ρεW)−1(IN − ρεW�)−1,

with L = (l1, . . . , l⌊Nδγ
⌋, 0, . . . , 0)�. Here li is generated

independently from the uniform distribution on (0.7, 0.9) for
i = 1, . . . ,

⌊
Nδγ

⌋
. Let ρε = 0.5, and W = (wij)N×N . All

elements in W are zero except that wi+1,i = wj−1,j = 0.5 for
i = 1, . . . , N − 2 and j = 3, . . . , N, and w12 = wN,N−1 = 1.

We set α = 0 under the null hypothesis. To evaluate the
power of our tests and the other competing tests under the alter-
native hypothesis, we consider the two following scenarios.

– Scenario 1: k = ⌊
N1/4⌋ and the nonzero entries of α

are equal to αi = ωi
√

2a log(N)/T, where ωi are iid ran-
dom variables with the Uniform distribution on (0, 1) and
a = 1, 2, . . . , 5;

– Scenario 2: k = ⌊
N1/3⌋ and the nonzero entries of α are

equal to αi = ωi
√

2a log(N)/T, where ωi are iid random

variables with P(ωi = ±1) = 1/2 and a =
0.4, 0.8, 1.2, 1.6, 2.0.

We present the empirical rejection rates for �U under the null
in Case 1 in Table 1. Overall, all tests have reasonable empirical
size, with the PY, MAX, and COM tests performing better than
the other tests. When εt follows the normal distribution and
N = 100, 200, the proposed adaptive test slightly over-rejects,
while the other tests provide quite accurate control of the size.
However, when δγ = 1/2 and δγ = 3/5, the FLY test is quite
conservative.

Figures 2–10 provide a summary of the rejection rates of
different procedures under the alternatives for �U in Case 1,
with k = ⌊

N1/4⌋. The proposed test, as well as the MAX
and COM tests, outperform the PY and FLY tests in all cases,
regardless of the values of δγ . In the case of weak signals (i.e.,
N = 100, 200), the proposed test delivers more power than
the MAX and COM tests. As discussed in Feng et al. (2022),
the PY and FLY tests are sum-of-squares type tests that are
sensitive to dense signals, and are likely to perform poorly in the
case of sparse signals. Not surprisingly, strong cross-sectional
dependence controlled by the parameter δγ harms the power of
the PY and FLY tests. As δγ increases, the power of the PY and
FLY tests decreases. Similar observations are found in the other
cases; see Figures 1–9 for �U in Case 1 in the supplementary
material.

We evaluate the performance of different procedures under
the alternative hypothesis for �U in Case 2 when k = ⌊

N1/3⌋.
The results are summarized in Figures 11–19. We observe that
the proposed test consistently outperforms the other tests, indi-
cating its robustness to strong cross-sectional dependence. We
also find that the power of the PY and FLY tests decreases as
δγ gets larger, which is a similar observation to the case of �U
in Case 1. This trend is further highlighted in Figures 10–18 in
supplementary material. Additional simulation results are pro-
vided in the Supplementary material, where we consider the case
where εt follows an ARCH process. Table 1 and Figures 19–24,
supplementary materials present the corresponding empirical
rejection rates and power curves of the different tests.

It is important to highlight that the power of the PY and FLY
tests is sensitive to the strength of the cross-sectional depen-
dence, which is controlled by the parameter δγ . Additionally, we
found that the proposed test is relatively robust to the choice of
K. In summary, our test provides reasonable control of the Type
I error and delivers better power than the other tests under weak
signals.

4.3. Real Data Analysis

We examine the monthly excess returns on all the constituents
of the S&P 500 from the CRSP database from January 1980
to December 2012, as analyzed by Fan, Liao, and Yao (2015).
One of the key empirical findings reported in Fan, Liao, and
Yao (2015) is that market inefficiency is predominantly caused
by a small fraction of stocks with positive intercepts, rather
than a large proportion of slightly mispriced assets. This finding
provides empirical evidence of sparse alternatives. Our goal here
is to test market efficiency on a rolling window basis. For each
month from December 1987 to December 2012, we calculate test
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Figure 1. Power curves for different tests, where k = 1, 5, 10, 15 with T = 100, N = 100, and �U = (
σij

)N
i,j=1 with σij = 0.6|i−j| . “AT” represents the proposed test

statistics.
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Table 1. Size (%) of different tests for �U in Case 1 at the 5% significance level.

δγ = 1/4 δγ = 1/2 δγ = 3/5

N = 100 200 500 100 200 500 100 200 500

Method T = 100 Normal errors
TFLY 5.1 5.9 5.3 2.8 2.1 1.7 0.6 0.4 0.3
TPY 5.5 6.3 5.6 5.4 4.4 5.4 6.0 5.9 5.0
TMAX 4.9 5.6 7.1 3.6 4.7 6.1 3.9 4.4 6.4
TCOM 4.6 5.5 6.3 4.9 4.5 5.6 5.8 5.9 6.0
G̃T (5) 7.2 7.5 6.5 7.2 7.2 5.9 6.4 6.6 6.2
G̃T (10) 6.9 7.0 6.5 6.8 6.9 5.8 6.0 6.1 6.3
G̃T (15) 6.7 6.7 6.4 6.5 6.8 5.8 5.8 6.0 6.2
G̃T (30) 6.7 6.6 6.3 6.3 6.8 5.8 5.6 5.9 6.1

T = 100 Student’s t errors
TFLY 4.0 3.6 2.9 1.9 1.0 0.8 0.2 0.2 0.3
TPY 5.2 3.7 4.1 5.4 5.0 3.9 5.1 6.8 6.2
TMAX 3.0 3.8 3.3 3.3 3.4 4.1 2.4 3.0 4.4
TCOM 3.8 4.2 3.5 5.0 4.1 4.4 4.2 5.6 6.2
G̃T (5) 5.3 5.0 3.1 5.2 5.1 3.8 4.1 3.7 3.8
G̃T (10) 4.6 4.7 3.1 5.0 4.9 3.8 4.0 3.8 3.8
G̃T (15) 4.4 4.5 3.1 4.8 4.9 3.8 4.0 3.8 3.8
G̃T (30) 4.4 4.2 3.1 4.5 4.7 3.7 4.1 3.7 3.8

Figure 2. Power (%) of different tests for �U in Case 1 with δγ = 1/4 and k =
⌊

N1/4
⌋

.

Figure 3. Power (%) of different tests for �U in Case 1 with δγ = 1/2 and k =
⌊

N1/4
⌋

.

statistics using the preceding 96 months’ returns (T = 96). A
total of 400 stocks were considered for this study, and we only
include stocks without missing observations in the past eight
years in the data for each testing month. We fit the Fama and
French three-factor model to the data in each rolling window

(l = 12/1987, 12/1988, . . . , 12/2012):

r(l)
it − f (l)

t = α
(l)
i + β

(l)
i,MKT(MKT(l)

t − f (l)
t ) + β

(l)
i,SMBSMB(l)

t

+ β
(l)
i,HMLHML(l)

t + u(l)
it (10)
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Figure 4. Power (%) of different tests for �U in Case 1 with δγ = 3/5 and k =
⌊

N1/4
⌋

.

Figure 5. Power (%) of different tests for �U in Case 1 with δγ = 1/4 and k =
⌊

N1/4
⌋

.

Figure 6. Power (%) of different tests for �U in Case 1 with δγ = 1/2 and k =
⌊

N1/4
⌋

.

for i = 1, . . . , N and t = l − 95, . . . , l, where rit is the return
for stock i at month t, ft is the risk free rate, and MKT, SMB, and
HML represent the market, size and value factors, respectively.

We apply the proposed approach and the other four complet-
ing procedures to examine the market efficiency hypothesis for
the data in each rolling window. The screening set suggested
by Fan, Liao, and Yao (2015) is computed, which shows that
only a few significant nonzero “alpha” components exist in seven

rolling windows, which directly implies the presence of sparse
or weak signals. For instance, with l = 12/1992, we select
284 stocks (Window 1) without missing observations and fit
the Fama-French three-factor model, and record the resulting
p-values from all the tests in Table 2. At the 5% significant
level, only the proposed test shows significant evidence against
the null, while the other tests fail to reject it, indicating that α

is possibly sparse in this window. Similarly, for l = 12/1996
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Figure 7. Power (%) of different tests for �U in Case 1 with δγ = 3/5 and k =
⌊

N1/4
⌋

.

Figure 8. Power (%) of different tests for �U in Case 1 with δγ = 1/4 and k =
⌊

N1/4
⌋

.

Figure 9. Power (%) of different tests for �U in Case 1 with δγ = 1/2 and k =
⌊

N1/4
⌋

.

(Window 2) based on 279 stocks, the proposed adaptive test
provides the strongest evidence against the null, followed by
the MAX test. For l = 12/1999 (Window 3) based on 241
stocks, both the PY and the proposed adaptive tests reject the
null hypothesis, while the other tests fail to reject it. Lastly, with
l = 12/2011 (Window 4) based on 170 stocks, all the tests find
significant evidence against the null.

To better understand these results and conduct a fair com-
parison among different procedures, we performed a simula-
tion study. We generated data from the fitted factor models
for each of the rolling windows. Specifically, for the lth rolling

window, we generated data from either the null or alternative
hypothesis.

S1. Let (α̂
(l)
i , β̂(l)

i,MKT, β̂(l)
i,SMB, β̂(l)

i,HML) be the estimates of the coef-
ficients and û(l)

it be the corresponding residuals. Under the
null, we generate the excess returns as follows

r∗
it = β̂

(l)
i,MKT(MKT(l)

t − f (l)
t ) + β̂

(l)
i,SMBSMB(l)

t

+ β̂
(l)
i,HMLHML(l)

t + εtû(l)
it ,

for i = 1, 2, . . . , N and t = l−95, . . . , l, where εt follows the
Rademacher distribution.
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Figure 10. Power (%) of different tests for �U in Case 1 with δγ = 3/5 and k =
⌊

N1/4
⌋

.

Figure 11. Power (%) of different tests for �U in Case 2 with δγ = 1/4 and k =
⌊

N1/3
⌋

.

Figure 12. Power (%) of different tests for �U in Case 2 with δγ = 1/2 and k =
⌊

N1/3
⌋

.

Figure 13. Power (%) of different tests for �U in Case 2 with δγ = 3/5 and k =
⌊

N1/3
⌋

.
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Figure 14. Power (%) of different tests for �U in Case 2 with δγ = 1/4 and k =
⌊

N1/3
⌋

.

Figure 15. Power (%) of different tests for �U in Case 2 with δγ = 1/2 and k =
⌊

N1/3
⌋

.

Figure 16. Power (%) of different tests for �U in Case 2 with δγ = 3/5 and k =
⌊

N1/3
⌋

.

Figure 17. Power (%) of different tests for �U in Case 2 with δγ = 1/4 and k =
⌊

N1/3
⌋

.



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 13

Figure 18. Power (%) of different tests for �U in Case 2 with δγ = 1/2 and k =
⌊

N1/3
⌋

.

Figure 19. Power (%) of different tests for �U in Case 2 with δγ = 3/5 and k =
⌊

N1/3
⌋

Table 2. Testing results of different procedures for the real data and simulated data mimicking the real data structure.

Data \ Test TPY TMAX TCOM G̃T (5) G̃T (10) G̃T (30) TFLY

Window 1 p-value
0.0942 0.0721 0.0832 0.0240 0.0240 0.0260 0.1267

H0 Bootstrap data Size (%)
8.6 4.5 7.8 5.8 5.9 5.7 2.6

Ha Bootstrap data Power (%)
18.2 69.6 65.0 74.4 74.5 74.4 9.2

Window 2 p-value
0.1189 0.0432 0.0861 0.0140 0.0140 0.0140 0.1368

H0 Bootstrap data Size (%)
6.4 5.3 6.4 5.6 5.7 5.6 1.6

Ha Bootstrap data Power (%)
12.3 59.8 53.4 63.3 63.2 63.1 4.4

Window 3 p-value
0.0364 0.0936 0.0650 0.0160 0.0160 0.0180 0.1005

H0 Bootstrap data Size (%)
8.7 5.3 8.2 5.5 5.5 5.4 2.0

Ha Bootstrap data Power (%)
14.2 55.3 49.2 60.8 60.8 60.6 3.2

Window 4 p-value
0.0035 0.0168 0.0102 0.0000 0.0000 0.0000 0.0482

H0 Bootstrap data Size (%)
8.1 4.2 6.8 4.4 4.4 4.4 2.6

Ha Bootstrap data Power (%)
21.4 73.3 68.1 79.8 79.6 79.6 10.2

S2. We let

α̃
(l)
i = α̂

(l)
i I{|α̂(l)

i | > σ̂i log(log T)
√

log N}.

Under the alternative, we generate the data according to the
following model

r∗
it = α̃

(l)
i + β̂

(l)
i,MKT(MKT(l)

t − f (l)
t ) + β̂

(l)
i,SMBSMB(l)

t

+ β̂
(l)
i,HMLHML(l)

t + εtû(l)
it ,

for i = 1, 2, . . . , N and t = l−95, . . . , l, where εt follows the
Rademacher distribution.
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We present the results of a simulation study in Table 2, which
allows us to compare the power and empirical size of the differ-
ent tests. We conducted 1000 replications for each scenario and
calculated the average power and empirical size. All tests showed
reasonable control over the empirical size, although the FLY test
was conservative. The proposed adaptive test was consistently
the most powerful in all scenarios, outperforming the MAX and
COM tests by approximately 10% in scenarios D3 and D4. These
findings are consistent with the results obtained from the real
data analysis, indicating that the proposed test may be a useful
addition to the existing methods for testing the market efficiency
hypothesis.

Supplementary Materials

The supplement contains some intermediate theoretical results and the
proofs of the theorems.
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