
Supplementary Materials

A1 Detailed setups and additional results for true

composition estimation

A1.1 Evaluation metrics

The specific formulations of the evaluation metrics introduced in Section 2.2 in the main
text are given below.

General similarity measures between two composition matrices

1. Mean squared error (SE):

Mse(X̂,X) =
1

mn

n∑
i=1

m∑
j=1

(Xi,j − X̂i,j)
2.

2. Sample-wise distance (SD):

Msd(X̂,X) =
1

n

n∑
i=1

∥X i − X̂ i∥2.

3. Taxon-wise distance (TD):

Mtd(X̂,X) =
1

m

m∑
j=1

∥X(j) − X̂(j)∥2.

Preservation of sample-wise properties

1. Shannon’s index (SH): Let Hsh(X i) = −
∑m

j=1Xi,j logXi,j,

Msh(X̂,X) =
1

n

n∑
i=1

(
Hsh(X̂ i)−Hsh(X i)

)2

.

2. Simpson’s index (SP): Let Hsp(X i) =
∑m

j=1X
2
i,j,

Msp(X̂,X) =
1

n

n∑
i=1

(
Hsp(X̂ i)−Hsp(X i)

)2

.

3. Bray–Curtis dissimilarity (BC): Let X̃ i = X i ∧ X̂ i, where ∧ means taking lesser

values between the two vectors elementwisely, BC(X i, X̂ i) = 1−
∑m

j=1 X̃i,j,

Mbc(X̂,X) =
1

n

n∑
i=1

BC(X̂ i,X i).
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4. Kullback–Leibler divergence (KL): Let KL(X i, X̂ i) =
∑m

j=1Xi,j log(Xi,j/X̂i,j),

Mkl(X̂,X) =
1

n

n∑
i=1

KL(X i, X̂ i).

5. Jensen–Shannon divergence (JS): Let X̃ = (X + X̂)/2,

Mjs(X̂,X) =
1

n

n∑
i=1

1

2

(
KL(X i, X̃ i) + KL(X̂ i, X̃ i)

)
.

6. Hellinger distance (HD): Let HD(X i, X̂ i) =
1√
2
∥X1/2

i − X̂
1/2

i ∥2, where X
1/2
i means

taking the square root on each element,

Mhd(X̂,X) =
1

n

n∑
i=1

HD(X i, X̂ i).

Preservation of taxon-wise properties

1. Gini coefficient (GI): Let Gini(y) = 1 − 2
n−1

(
n−

∑n
i=1 iyi∑n
i=1 yi

)
for a random sample y

with values y1 ≤ y2 ≤ · · · ≤ yn,

Mgi(X̂,X) =
1

m

m∑
j=1

(Gini(X(j))−Gini(X̂(j)))
2.

2. Pair of mean and standard deviation (MS): Let (aj, bj) and (âj, b̂j) be the sample

mean and standard deviation of X(j) and X̂(j) respectively,

Mms(X̂,X) =
1

m

m∑
j=1

(aj − âj)
2 + (bj − b̂j)

2.

3. Coefficient of variation (CV):

Mcv(X̂,X) =
1

m

m∑
j=1

(bj/aj − b̂j/âj)
2.

4. Kolmogorov–Smirnov distance (KS): Let KS(X(j), X̂(j)) = supx |F1(x) − F2(x)|,
where F1, F2 denotes the empirical distribution functions of the first and the sec-
ond sample respectively,

Mks(X̂,X) =
1

m

m∑
j=1

KS(X(j), X̂(j)).

2



5. Wasserstein distance (WS): Let WS(X(j), X̂(j)) = 1
n

∑n
i=1 |X

(i)
(j) − X̂

(i)
(j)|, where X

(i)
(j)

represents the ith order statistic of sample X(j),

Mws(X̂,X) =
1

m

m∑
j=1

WS(X(j), X̂(j)).

6. Pairwise taxon-to-taxon correlation (TT):

Mtt(X̂,X) =
2

m(m− 1)

∑
j<k

(Corr(X(j),X(k))− Corr(X̂(j), X̂(k)))
2.

A1.2 Detailed simulation setups

S2–S5: Data generated by alternative models with correlations. Microbial taxa
coexist in functionally related ways, and therefore, their abundances may display covari-
ance. To mimic the dependency of abundances across taxa, we introduced several correla-
tion structures into the data. In addition to the gamma model (formula (1) in the main
text) to generate true absolute abundance, we also considered three other commonly used
probabilistic models :

log(Yi,j)|θij ∼ N(θij, 2),

Yi,j|θij ∼ Poisson(θij),

Yi,j|θij ∼ NB(0.5, 0.5/(0.5 + θij)),

for log-normal, Poisson, and negative binomial, respectively, where NB(a, b) represents the
distribution of the number of failures in a sequence of Bernoulli trials with the target
number of successes a and probability of success b ∈ (0, 1). We use S2–S5 to denote the
settings with the four distributions.

• Correlation structure. We set m = 100 and designated 30 taxa to have bimodal
composition distributions with equal probability of being from each mode and 70
taxa to have a single mode, labeling them as 1 ∼ 100. We included several types of
correlations: (i) Taxa 1 ∼ 5 are simultaneously from either the larger or smaller mode,
on the contrary to taxa 6 ∼ 10; (ii) When taxa 11 ∼ 12 are both from the larger mode,
taxa 13 ∼ 16 will also be from the larger mode, while taxa 17 ∼ 20 will be from the
smaller mode. Additionally, the single-modal taxa 31 ∼ 35 will be abundant (reset
Yi,j ∼ Unif(Quantile(Y (j), 0.75),maxY (j)) for j = 31, . . . , 35 and i ∈ {i = 1, . . . , n :
δi,11 = δi,12 = 1}, where Y (j) = (Y1,j, . . . , Yn,j), Quantile(y, q) represents the q×100%
quantile, and maxy represents the maximum value of sample y), and taxa 36 ∼ 40
will be rare (reset Yi,j ∼ Unif(minY (j),Quantile(Y (j), 0.25)), where miny represents
the minimum value of sample y); (iii) If taxon 41 has absolute abundance larger than
its third quartile across samples, i.e., Yi,41 > Quantile(Y (41), 0.75), then taxa 42 ∼ 45
will be abundant and taxa 46 ∼ 50 will be rare; (iv) Taxa 51 ∼ 60 are increasing
across samples, i.e, Y1,j ≤ Y2,j ≤ · · · ≤ Yn,j, j = 51, . . . 60, while taxa 61 ∼ 70 are
decreasing.
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S6–S9: Data generated by non-parametric models. Given a real count matrix, we
randomly selected n samples and m taxa from the matrix and regarded it as the true abso-
lute abundance. We generated the observed count matrix by randomly masking (replacing
with zeros) a part of non-zero values in the original count matrix to further increase zero
inflation to make the estimation more challenging. The masking probability function was
estimated in a similar way as in Arisdakessian et al. (2019). Specifically, for each taxon,
we extracted the proportion of zeros vs. the mean of those positive values; then, we fitted
a logistic function to these data points. We masked one-fifth of the non-zero values of
each taxon by random sampling with the probability weights given by the logistic function
previously fitted. We used four datasets as the baseline from the studies of Clostridium
difficile infection (CDI) (Schubert et al. 2014), inflammatory bowel disease (IBD) (Morgan
et al. 2012), rheumatoid arthritis (RA) (Scher et al. 2013), and smoking effect on the hu-
man upper respiratory tract (SMOKE) (Charlson et al. 2010). The settings with the four
datasets are referred to as S6–S9 respectively.

For the parametric models, we let the total counts Ni be independently generated
from NB(0.5, 0.5 / (0.5 + 1000)), i.e., the negative binomial distribution with dispersion
parameter 0.5 and mean 1000. In addition, we set the composition Xi,j to be 0 if its original
value is smaller than 10−6 to generate physically absent taxa and then normalized the data
to ensure that the composition sums up to 1. Based on the true compositions and the total
counts, multinomial models are used to generate the observed counts.

A1.3 Additional results

Table A1 provides detailed values for each evaluation metric across different methods under
simulation setting S1.
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Table A2: Characteristics of the real microbiome datasets. The second to fifth columns
respectively list the number of taxa, sample size, numbers of the controls and cases of each
filtered dataset (prevalence ≥ 20%, library size ≥ 1000).

m n n (controls) n (cases) Reference
IBD-1 269 76 21 55 Papa et al. (2012)
IBD-2 245 86 36 50 Willing et al. (2010)
IBD-3 757 161 16 145 Gevers et al. (2014)
IBD-4 123 123 14 109 Morgan et al. (2012)

A2 Detailed setups and additional results for differ-

ential abundance analysis

A2.1 Detailed simulation setups

As in Zhou et al. (2022), we used the COMBO data as the reference dataset to estimate
the parameters in the four data-generation models:

Yi,j ∼ Gamma(aj exp(bjui), 1),

log(Yi,j) ∼ N(aj + bjui, σ
2
j ),

Wi,j ∼ Poisson(exp(ajNi + bjui)),

Wi,j ∼ NB(dj, dj/{dj + exp(ajNi + bjui)}),

where aj, σ
2
j , and dj were estimated based on the COMBO data, ui, which was set to be a

binary variable, is the variable of interest, Ni is the sequencing depth generated from the
negative binomial distribution with parameters estimated from the COMBO data, and bj
was set to be either zero for non-differential taxon or non-zero for differential taxon. For
gamma and log-normal distributions, we let Xi,j =

Yi,j∑m
k=1 Yi,k

and generated the observed

abundance from Wi,1, . . . ,Wi,m ∼ Multinomial(Xi,1, . . . , Xi,m) with Ni =
∑m

j=1Wi,j.

A2.2 Characteristics of the real datasets

Table A2 summarizes the characteristics of the four real microbiome datasets.

A2.3 Detailed studies of the results for IBD-2, IBD-3 and IBD-4

We provide detailed analyses of the results for IBD-2, IBD-3, and IBD-4 (Figures 4b and
4c in the main text) below.

For IBD-2, all three methods controlled the FDR, with LinDA-SAVER making the most
discoveries, followed by LinDA-BMDD and LinDA. At 10% FDR, LinDA-BMDD, LinDA-
SAVER, and LinDA identified 3, 15, and 4 differential taxa, respectively. Two differential
taxa identified by LinDA-BMDD were also identified by the other two methods, while the
remaining one was also identified by LinDA-SAVER. Ten out of the fifteen differential
taxa identified by LinDA-SAVER were absent from the results of both LinDA-BMDD and
LinDA. For IBD-3, all three methods showed some FDR inflation, with LinDA-BMDD dis-
playing the mildest FDR inflation and the fewest discoveries. At 10% FDR, LinDA-BMDD,
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Method ANCOMBC ANCOMBC−BMDD ANCOMBC−SAVER
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Figure A1: (Bottom) Number of discoveries vs. target FDR level for the real datasets;
(Top) Empirical FDR vs. target FDR level for the shuffled real datasets. The dashed gray
line represents the diagonal. The results were averaged over 100 simulation runs.

LinDA-SAVER, and LinDA identified 28, 83, and 48 differential taxa, respectively, with 25
differential taxa common to the three methods and 1, 40, and 3 unique to LinDA-BMDD,
LinDA-SAVER, and LinDA, respectively. The one unique taxon to LinDA-BMDD, be-
longing to Blautia of Lachnospiraceae family, has been shown to be associated with IBD
(Mah et al. 2023). For IBD-4, LinDA-BMDD made a similar number of discoveries to
LinDA and fewer discoveries than LinDA-SAVER, and displayed the best FDR control
compared to the other two methods. At 10% FDR, LinDA-BMDD, LinDA-SAVER, and
LinDA identified 37, 55, and 42 differential taxa, respectively. Thirty-three differential
taxa identified by LinDA-BMDD were also identified by either or both of the other meth-
ods. LinDA-BMDD, LinDA-SAVER, and LinDA had 4, 11, and 2 method-specific taxa,
respectively. Two unique taxa identified by LinDA-BMDD belonged to Blautia of Lach-
nospiraceae family, one belonged to Clostridium XlVa of Lachnospiraceae family, and the
remaining one belonged to Anaerofilum of Ruminococcaceae family. This result is consis-
tent with our previous findings. The literature has also shown disruption in the taxa of
the Lachnospiraceae and Ruminococcaceae families in IBD patients compared to controls
(Schirmer et al. 2018, Yilmaz et al. 2019). Taken together, BMDD significantly increases
the robustness of LinDA by providing a more effective false positive control. The results
by LinDA-BMDD are expected to be more reproducible.

A2.4 Additional results

Figure A1 compares the performance of the original ANCOM-BC to ANCOMBC-BMDD
and ANCOMBC-SAVAER on the four real datasets.
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A3 Mixture regression modeling

A3.1 Incorporating sample covariates

In practice, we often observe a set of sample covariates (say Zi ∈ Rk) together with the taxa
counts. Here, we introduce a mixture regression framework to incorporate these sample
covariates. Specifically, we consider the following model:

Wi,1, . . . ,Wi,m|X i ∼ Multinomial(Xi,1, . . . , Xi,m),

Xi,1, . . . , Xi,m|θi ∼ Dirichlet(θi1, . . . , θim),

θij|δij
ind∼ δijω(αi,j,1) + (1− δij)ω(αi,j,0),

δij
ind∼ Bernoulli(πij),

logit(πij) = log

(
πij

1− πij

)
= Z⊤

i ξj,

log(αi,j,l) = Z⊤
i ηj,l, l = 0, 1.

We can extend the algorithm in Section 4.4 in the main text to estimate the unknown
parameters ξ = (ξ1, . . . , ξm) and ηl = (η1,l, . . . ,ηm,l) with l = 0, 1.

Remark A1 A special case of this framework allows us to perform K-means type clus-
tering. Specifically, Zi is a vector with the lth component equal to 1 and all the other
components equal to zero if the ith subject belongs to the group l. Here the group assign-
ment (i.e., which component of Zi is 1) is unknown. Thus, we need to iteratively learn the
group assignment together with the unknown parameters ξj and ηj,l.

A3.2 Incorporating the phylogenetic tree information

Besides sample-level covariates, our model is also possible to accommodate the phylogeny
among taxa. Our idea is to define a set of covariates (taxon-level covariates) that encode
the phylogenetic information and use these covariates in the modeling. One way to define
the taxon-level covariates is using the group information, e.g., the phylum of the taxa.
In addition, we can compute the patristic distance between taxon i and j (denoted by
dij) as the length of the shortest path linking the two taxa. Write D = (dij)

m
i,j=1 as the

corresponding distance matrix. Then, we perform principal coordinate analysis on D to
obtain the principal coordinates (PC) associated with the firstK leading eigenvalues. These
PCs can then be treated as the covariates in our structure adaptive learning procedure
below.

In either case, we let U j be the covariate derived from the phylogenetic tree for the jth
taxon. We can incorporate the covariate into our model by considering

logit(πij) = log

(
πij

1− πij

)
= Z⊤

i ξj +U⊤
j ζi,

log(αi,j,l) = Z⊤
i ηj,l +U⊤

j κi,l, l = 0, 1.

Remark A2 The way of deriving covariates from the phylogenetic tree is far from unique.
In the phylogenetic tree, each taxon is associated with a leaf node of the tree. As illustrated
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by Figure A2, Vj with 1 ≤ j ≤ 6 denote the internal nodes with V1 being the root node and
Xj with 1 ≤ j ≤ 7 are the leaf nodes corresponding to the taxa. Suppose the internal node
Vj has mj children. Then it divides the leaf nodes into mj + 1 groups, where the first mj

groups correspond to the off-springs of its mj children (including the children themselves if
they are already terminal nodes), and the last group contains all the non-off-springs. For
example, consider the root node V1, which divides the seven leaf nodes into two groups,
namely {X1, X2, X3, X4, X5} and {X6, X7}. In contrast, the leaf nodes form four groups
with respect to the internal node V5, i.e., {X1, X2, X6, X7}, {X3}, {X4} and {X5}. As a
result, we can construct six covariates for each leaf node based on the groupings induced by
each of the six internal nodes. Specifically, we let uj,k be a categorical variable indicating
to which group (induced by the internal node Vk) Xj belongs. Generally, we can define the
set of covariates for each taxon derived from the phylogenetic tree as uj = (uj,1, . . . , uj,I)
for 1 ≤ j ≤ m, where I is the number of internal nodes. In practice, we may consider
including internal nodes at a specific level of the tree to reduce the number of covariates.

V1

V2 V3

V4 V5 V6

X1 X2 X3 X4 X5 X6 X7

Figure A2: A simplified illustration of the phylogenetic tree. ⃝ denotes internal node while
△ represents leaf node.
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