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Abstract: We develop a new method to estimate the projection direction in the debiased

Lasso estimator. The basic idea is to decompose the overall bias into two terms corresponding

to strong and weak signals respectively. We propose to estimate the projection direction by bal-

ancing the squared biases associated with the strong and weak signals as well as the variance of

the projection-based estimator. Standard quadratic programming solver can efficiently solve the

resulting optimization problem. In theory, we show that the unknown set of strong signals can be

consistently estimated and the projection-based estimator enjoys the asymptotic normality under

suitable assumptions. A slight modification of our procedure leads to an estimator with a poten-

tially smaller order of bias comparing to the original debiased Lasso. We further generalize our

method to conduct inference for a sparse linear combination of the regression coefficients. Numeri-

cal studies demonstrate the advantage of the proposed approach concerning coverage accuracy over

some existing alternatives.

Keywords: Confidence interval, High-dimensional linear models, Lasso, Quadratic program-

ming.

1 Introduction

Uncertainty quantification after model selection has been an active field of research in statistics

for the past few years. The problem is challenging as the Lasso type estimator does not admit a

tractable asymptotic limit due to its non-continuity at zero. Standard bootstrap and subsampling

techniques cannot capture such non-continuity and thus fail for the Lasso estimator even in the

low-dimensional regime. Several attempts have been made in the recent literature to tackle this

challenge. For example, (Multi) sample-splitting and subsequent statistical inference procedures

have been developed in Wasserman and Roeder (2009) and Meinshausen et al. (2009). Meinshausen

and Bühlmann (2010) proposed the so-called stability selection method based on subsampling in

combination with selection algorithms. Chatterjee and Lahiri (2011, 2013) have considered the

bootstrap methods that can provide valid approximation to the limiting distributions of the Lasso

and adaptive Lasso estimators, respectively.
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For statistical inference after model selection, Berk et al. (2013) developed a post-selection

inference procedure by reducing the problem to one of simultaneous inference. Lockhart et al. (2014)

constructed a statistic from the Lasso solution path and showed that it converges to a standard

exponential distribution. To account for the effects of the selection, Lee et al. (2016) developed

an exact post-selection inference procedure by characterizing the distribution of a post-selection

estimator conditioned on the selection event. By leveraging the same core of statistical framework,

Tibshirani et al. (2016) proposed a general scheme to derive post-selection hypothesis tests at any

step of forward stepwise and least angle regression, or any step along the Lasso regularization

path. Barber and Candès (2015) proposed an inferential procedure by adding knockoff variables

to create certain symmetry among the original variables and their knockoff copies. By exploring

such symmetry, they showed that the method provides finite sample false discovery rate control.

The knockoff procedure has been extended to the high dimensional linear model in Barber and

Candès (2019) and the settings in which the conditional distribution of the response is completely

unknown in Candès et al. (2018).

Along with a different line that is more closely related to the current work, Zhang and

Zhang (2014) first introduced the idea of regularized projection, which has been further explored

and extended in van de Geer et al. (2014) and Javanmard and Montanari (2014). The common

idea is to find a projection direction designed to remove the bias term in the Lasso estimator. The

resulting debiased Lasso estimator which is no longer sparse was shown to admit an asymptotic

normal limit. To find the projection direction, the nodewise Lasso regression by Meinshausen and

Bühlmann (2006) was adopted in both Zhang and Zhang (2014) and van de Geer et al. (2014),

while Javanmard and Montanari (2014) considered a convex optimization problem to approximate

the precision matrix of the design. Zhang and Cheng (2017) and Dezeure et al. (2017) proposed

boostrap-assisted procedures to conduct simultaneous inference based on the debiased Lasso estima-

tors. Belloni et al. (2014) developed a two-stage procedure with the so-called post-double-selection

as first and least squares estimation as second stage. Ning and Liu (2017) proposed a decorrelated

score test in a likelihood based framework. Zhu and Bradic (2018a, 2018b) developed projection-

based methods that are robust to the lack of sparsity in the model parameter. More recent advances

along this direction include Neykov et al. (2018) and Chang et al. (2019). Focusing on the the-

oretical aspects of debiased Lasso, Javanmard and Montanari (2018) studied the optimal sample

size for debiased Lasso and Cai and Guo (2017) showed that the debiased estimator achieves the

minimax rate. Although the methodology and theory for the debiased Lasso estimator are elegant,

its empirical performance could be undesirable. For instance, the average coverage rate for active

variables could be far lower than the nominal levels in finite sample [see, e.g., van de Geer et

al. (2014)].

A natural question to ask is whether there exist alternative projection directions that can

improve the finite sample performance in the original debiased Lasso estimator. In this paper, we

propose a new method to estimate the projection direction and construct a novel Bias Reducing

Projection (BRP) estimator, which is designed to further reduce the bias of the original debiased

Lasso estimator. Different from the nodewise Lasso adopted in both Zhang and Zhang (2014)
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and van de Geer et al. (2014), we propose a direct approach to estimate the projection direction.

Our method is related to the procedure in Javanmard and Montanari (2014) but differs in the

following aspects. (i) We formulate a different objective function which appropriately balances the

squared bias and the variance of the BRP estimator; (ii) We decompose the bias term into two parts

according to a preliminary estimate of the signal strength: one associated with the strong signals

and the other one related to the weak signals and noise; (iii) We develop new methods to estimate

the set of strong signals and to select the tuning parameters involved in the objective function.

Our approach relies crucially on the following observation in finite sample: the bias term as-

sociated with the strong signals contributes more to the overall bias. Motivated by this fact, we

estimate the projection direction by minimizing an objective function that assigns different weights

to the squared bias terms associated with the strong and weak signals. The set of strong signals

is unknown but can be consistently estimated based on a preliminary debiased Lasso estimator.

The resulting optimization problem can be cast into a quadratic programming problem which can

be efficiently solved using a standard quadratic programming solver. We use residual bootstrap to

estimate the coverage probabilities associated with different choices of weights and select the one

that delivers the shortest interval width while ensuring that the bootstrap estimate of the coverage

probability is close to the nominal level.

In theory, we show that the unknown set of strong signals can be consistently estimated by a

surrogate set based on a preliminary projection-based Lasso estimator, where the projection direc-

tion is obtained using a novel formulation. The BRP estimator is shown to enjoy the asymptotic

normality under suitable assumptions. As one of the main contributions, we prove that a slight

modification of our BRP estimator leads to an estimator with a potentially smaller order of bias

comparing to the original debiased Lasso. We further generalize our BRP estimator to conduct

statistical inference for a sparse linear combination of the regression coefficients under suitable

assumptions on a loading vector. We demonstrate the usefulness of the proposed approach by

comparing it with the state-of-the-art approaches in simulations.

The rest of the paper is organized as follows. We introduce the projection-based estimator and

develop a new formulation to find the projection direction in Section 2. We propose a method

to estimate the set of strong signals and show its consistency in Section 3.1. We establish the

asymptotic normality of the BRP estimator in Section 3.2 and the modified BRP estimator which

could result in a potentially smaller order of bias compared to the original debiased Lasso is proposed

in Section 3.3. Section 4 generalizes the method to conduct inference for a sparse linear combination

of the regression coefficients. We develop a bootstrap-assisted procedure for choosing the tuning

parameters in Section 5. Section 6 presents some numerical results. Section 7 concludes. Technical

details and additional numerical results are gathered in Supplementary Material.

Throughout this paper, we use the following notations: For a matrix A ∈ Rd×d and two sets

I, J ⊆ [d] := {1, 2, . . . , d}, denote by AI,J (A−I,−J) the submatrix of A with (without) the rows

in I and columns in J . Write A[d],−I = A−I . Similarly for a vector a ∈ Rq, write aI (a−I) the

subvector of a with (without) the components in I. Let ‖a‖q with 0 ≤ q ≤ ∞ be the lq norm of a

and write ‖a‖ = ‖a‖2. For two sets S1,S2, let S1 \ S2 be the set of elements in S1 but not in S2.
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Denote by |S1| the cardinality of S1. For a square matrix A, let λmax(A) and λmin(A) be its largest

and smallest eigenvalues respectively. Define ‖A‖ = ‖A‖op = supa∈Sd−1 ‖Aa‖ as the operator norm

of A, where Sd−1 is the unit sphere in Rd. The sub-gaussian norm of a random variable X which we

denote by ‖X‖ψ2 is defined as ‖X‖ψ2 = supq≥1 q
−1/2(E|X|q)1/q. For a random vector X ∈ Rd, its

sub-gaussian norm can be defined as ‖X‖ψ2 = supa∈Sd−1 ‖a>X‖ψ2 . The sub-exponential norm of a

random variable X which we denote by ‖X‖ψ1 is defined as ‖X‖ψ1 = supq≥1 q
−1(E|X|q)1/q. For a

random vector X ∈ Rd, its sub-exponential norm can be defined as ‖X‖ψ1 = supa∈Sd−1 ‖a>X‖ψ1 .

Let (M, ρ) be a metric space and let ε > 0. A subset Nε of M is called an ε-net of M if every

point x ∈ M can be approximated within ε by some point y ∈ Nε, i.e., ρ(x, y) ≤ ε. The minimal

cardinality of an ε-net of M is called the covering number of M.

2 Projection-based estimator

To illustrate the idea, we shall focus on the high-dimensional linear model:

Y = Xβ + ε, (1)

where Y = (y1, . . . , yn)> ∈ Rn×1 is the response vector, X = (X1, . . . , Xp) ∈ Rn×p is the design

matrix, β = (β1, . . . , βp)
> ∈ Rp×1 is the vector of unknown regression coefficients with ‖β‖0 = s0

and ε = (ε1, . . . , εn)> is the vector of independent errors with the common variance σ2.

2.1 Motivation

Suppose we are interested in conducting inference for a single regression coefficient βj for 1 ≤
j ≤ p. We first rewrite model (1) as

ηj := Y −X−jβ−j = Xjβj + ε. (2)

If the value of ηj is known, the problem would reduce to the inference about βj in a simple linear

regression model. As ηj is not directly observable, a natural idea is to replace ηj by a suitable

estimator defined as

η̂j = Y −X−j β̂−j = Xjβj + ε+ X−j(β−j − β̂−j), (3)

where β̂ is a preliminary estimator for β. Here (3) is an approximation to (2) with the extra term

X−j(β−j − β̂−j) due to the estimation effect by replacing β−j with β̂−j . In this paper, we focus on

the Lasso estimator given by

β̂ = argmin
β̃∈Rp

{
1

2n
‖Y −Xβ̃‖2 + λ‖β̃‖1

}
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whose properties have now been well understood [see e.g. Bühlmann and van de Geer (2011);

Hastie et al. (2015)]. We also try the alternative Lasso formulation without penalizing βj in our

numerical studies and find that it does not improve the finite sample performance. Now given a

projection vector vj = (vj,1, . . . , vj,n)> ∈ Rn×1 such that v>j Xj = n, we define the projection-based

estimator for βj as

β̃j(vj) :=
1

n
v>j η̂j = βj +

1

n
v>j ε+R(vj , β−j), (4)

where R(vj , β−j) = n−1v>j X−j(β−j − β̂−j) is the bias term caused by the estimation effect. (4)

implies that

√
n(β̃j(vj)− βj) =

1√
n
v>j ε+

√
nR(vj , β−j).

To ensure that β̃j(vj) has asymptotically tractable limiting distribution, we require the bias term
√
nR(vj , β−j) to be dominated by the leading term n−1/2v>j ε, which converges to a normal limit un-

der suitable assumptions. In other words, the bias term
√
nR(vj , β−j) controls the non-Gaussianity

of β̃j(vj). A practical challenge here is that the bias
√
nR(vj , β−j) can be hardly estimated directly

from the data. It is common in the literature to replace |
√
nR(vj , β−j)| by a conservative estimator

using the l1 − l∞ bound, i.e.,

‖
√
n(β−j − β̂−j)‖1‖n−1v>j X−j‖∞. (5)

See Zhang and Zhang (2014), van de Geer et al. (2014), Javanmard and Montanari (2014). We

note that the variance of n−1/2v>j ε is equal to σ2n−1‖vj‖2. To achieve efficiency, we shall also try

to minimize σ2n−1‖vj‖2 given that the bias
√
nR(vj , β−j) is properly controlled. Because the first

term in (5) is independent of vj , we can seek a projection direction to minimize a linear combination

of ‖n−1v>j X−j‖2∞ and the variance σ2n−1‖vj‖2. However, the l1− l∞ bound on the whole bias term

could be conservative as it does not take into account the specific form of the bias term. We note

that the bias term can be written as

√
nR(vj , β−j) =

1√
n

∑
k 6=j

v>j Xk(βk − β̂k)

=
1√
n

∑
k∈S(1)j (ν)

v>j Xk(βk − β̂k) +
1√
n

∑
k∈S(2)j (ν)

v>j Xk(βk − β̂k)

=
√
nR(1)(vj , β−j) +

√
nR(2)(vj , β−j),

(6)

where S(1)j (ν) := S(ν) \ {j} and S(2)j (ν) := S(ν){ \ {j} denote the index sets (except j) associated

with the strong and weak signals respectively for S(ν) := {k : |βk| ≥ ν} and both R(1)(vj , β−j)

and R(2)(vj , β−j) are defined accordingly. Here ν is a threshold that separates the coefficients into

two-groups namely the group with strong signals and the group with weak or zero signal. For
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example, one can set ν = c0
√

log(p)/n for some large enough constant c0, which is the minimax

rate for support recovery.

The formulation (6) using the decomposition associated with signal strengths can be emprically

motivated. Specifically, it generally provides a smaller bias than the one without such decomposi-

tion with the simulated data. Figure 4 illustrates one such representative case where we make a

comparison of the biases for projection vectors calculated based on two different methods: the one

solves (8) by using the estimated set of strong signals as in Section 3.1 (denoted by “With Decom-

position”) and the other one solves the same problem but with A(1)
j = ∅ (denoted by “Without

Decomposition”). It can be seen that “With Decomposition” shows a smaller bias than “Without

Decomposition.” Similar results could be observed in various simulation settings.

2.2 A new projection direction

In this subsection, we propose a novel formulation to find the projection direction. When

|S(1)j (ν)| ≤ n, we have the freedom to choose vj to make the term ‖n−1v>j XS(1)j (ν)
‖∞ arbitrarily

small. In fact, we can always choose vj such that it is orthogonal to all Xk with k ∈ S(1)j (ν). The

basic idea here is to find a projection direction vj such that it is “more orthogonal” to the space

spanned by {Xk}k∈S(1)j (ν)
as compared to the space spanned by {Xk}k∈S(2)j (ν)

. With this intuition

in our mind and the goal to balance the squared bias with the variance, we formulate the following

optimization problem

min
vj

γ1 max
k∈S(1)

j (ν)

|n−1v>j Xk|2 + γ2 max
k∈S(2)j (ν)

|n−1v>j Xk|2 + σ2n−1‖vj‖2
 ,

s.t. v>j Xj = n, (7)

where γ1, γ2 > 0 are tuning parameters which control the trade-off between the squared bias and

the variance. The term γ1 max
k∈S(1)

j (ν)
|n−1v>j Xk|2 (γ2 max

k∈S(2)
j (ν)

|n−1v>j Xk|2) corresponds to the

l1 − l∞ bound for R2
(1) (R2

(2)). By introducing two ancillary variables uj1, uj2, (7) can be cast into

the following quadratic programming problem

min
uj1,uj2,vj

(γ1u
2
j1 + γ2u

2
j2 + σ2n−1‖vj‖2),

s.t. v>j Xj = n,

− uj1 ≤ n−1v>j Xk ≤ uj1, k ∈ S(1)j (ν),

− uj2 ≤ n−1v>j Xk ≤ uj2, k ∈ S(2)j (ν),

which can be solved efficiently using existing quadratic programming solver.

The set S(1)j (ν) is generally unknown and needs to be replaced by a surrogate set A(1)
j with

|A(1)
j | ≤ n. In Section 3.1, we describe a method to select A(1)

j based on a preliminary projection-
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based estimators. We show that A(1)
j converges asymptotically to a nonrandom limit, i.e.,

P
(
A(1)
j = B(1)j

)
→ 1,

for a nonrandom subset B(1)j of [p]. We remark that B(1)j does not need to agree with S(1)j (ν) for

our procedure to be valid. To ensure that the remainder term is negligible, the theoretical analysis

in Section 3.2 suggests that γ1 and γ2 should both be of the order O
(
σ2n/ log p

)
. Combining the

above discussions, we now state the optimization problem for obtaining the optimal projection

direction

min
uj1,uj2,vj

(
C1

n

log p
u2j1 + C2

n

log p
u2j2 + n−1‖vj‖2

)
,

s.t. v>j Xj = n,

− uj1 ≤ n−1v>j Xk ≤ uj1, k ∈ A(1)
j ,

− uj2 ≤ n−1v>j Xk ≤ uj2, k ∈ A(2)
j ,

(8)

where A(2)
j :=

(
A(1)
j

){
\ {j} and C1, C2 > 0 are tuning parameters whose choice will be discussed

in Section 5.

Remark 1. A related method is the refitted Lasso by Liu and Yu (2013). The idea is to refit the

model selected by the Lasso and conduct inference based on the refitted least squares estimator.

Such an estimator fits into the framework of the projection-based estimators. To see this, let Ŝ

be the set of active variables selected by the Lasso and note that β̂k = 0 for k /∈ Ŝ. For each

j ∈ Ŝ, let ŵj be the projection of Xj onto the orthogonal space of XŜ\{j}. Then the refitted

least squares estimator is given by ŵ>j (Y − X−j β̂−j)/(ŵ>j Xj). It is easy to see that the bias for

the refitted least squares estimator is proportional to
∑

k/∈Ŝ ŵ
>
j Xkβk, which disappears when the

selected model contains all significant variables. However, when the model selection consistency

fails, such a procedure is no longer valid due to the nonnegligible bias.

3 Methodology

3.1 Surrogate set

We describe a procedure to estimate the set of strong signals based on a preliminary projection-

based estimator. It should be noted that the estimator here is different from the original debiased

Lasso because it is based on the novel formulation (8). Specifically, for some τ > 0, we define our

estimate for the set of strong signals as

A(τ) := {l : |Tl| >
√
τ log p} where Tl =

√
nβ̃l(v̂l)

σ̂n−1/2||v̂l||
(9)
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where σ̂ is an estimator of the noise level σ and β̃l(v̂l) is a projection-based estimator with v̂l being

the solution to the following optimization problem

min
ul,vl

(
C0

n

log p
u2l + n−1‖vl‖2

)
,

s.t. v>l Xl = n,

− ul ≤ n−1v>l Xk ≤ ul, k 6= l.

(10)

In practice, both C0 and τ need to be appropriately chosen. The details for the selection are

discussed in Section 8.1. Note that (10) is a special case of (8) when we have no knowledge about

the set of strong signals, that is, A(1)
l = ∅. We define the surrogate sets to be

A(1)
j (τ) := A(τ) \ {j}, A(2)

j (τ) := A(τ){ \ {j}. (11)

Throughout the paper, we consider the variance estimator

σ̂2 =
1

n
‖Y −Xβ̂‖2 (12)

which appears to outperform an alternative estimator ‖Y −Xβ̂‖2/(n − ‖β̂‖0) studied in Reid et

al. (2016), see Figure 22 in Supplementary Material for a comparison. Before presenting the main

result of this subsection, we introduce some assumptions.

Assumption 1. There exist a set B ⊆ [p] = {1, 2, . . . , p} and 0 ≤ d0 < d1 such that

max
l∈B{

|
√
nβl|
σ

≤
√
d0 log p,

min
l∈B

|
√
nβl|
σ

≥
√
d1 log p.

Assumption 2. The error ε is a mean-zero sub-gaussian random vector with the sub-gaussian

norm κε.

Assumption 3. The preliminary estimator satisfies that

√
n‖β̂ − β‖1 = Op(s0

√
log(p)).

Assumption 4. The variance estimator σ̂2 is consistent in the sense that σ̂/σ
p→ 1.

Assumption 5. Suppose the design matrix X ∈ Rn×p has i.i.d. rows with zero population mean

and covariance matrix Σ = (Σi,j)
p
i,j=1. Assume that

1. maxj Σj,j <∞;

2. λmin(Σ) ≥ Λmin > 0;

3. The rows of X are sub-gaussian with the sub-gaussian norm κ <∞.
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Assumption 6. n, p and s0 satisfy the rate condition s0 log p/
√
n = o(1).

Assumption 1 allows the strengths of strong and weak signals to be the same order and thus is

much weaker than the “beta-min” condition which requires the weak signals to be of smaller order.

Assumptions 3 and 4 are satisfied for the Lasso estimator and the variance estimator σ̂ in (12) under

suitable regularity conditions [Bühlmann and van de Geer (2011)]. Assumptions 2 and 5 require

the error and design to be sub-gaussian. Similar assumptions have been made in van de Geer et

al. (2014). Like Javanmard and Montanari (2014), the validity of our method does not rely on the

sparsity of the precision matrix of the design, which is required in the nodewise Lasso regression

for the original debiased Lasso. In view of Cai and Guo (2017), the rate condition in Assumption

6 cannot be relaxed without extra information. Zhu and Bradic (2018a, 2018b) proposed testing

procedures in high-dimensional linear models which impose much weaker restrictions on model

sparsity or the loading vector representing the hypothesis. However, their methods require certain

auxiliary sparse models, which are not needed for our procedure.

Define Σj\−j = Σj,j −Σj,−jΣ
−1
−j,−jΣ−j,j and κ0j = 2

(
1 +

√
Λ−1minΣj,j

)
κ2 for 1 ≤ j ≤ p. The

following proposition shows that the surrogate set A(1)
j (τ) with a properly chosen τ converges to

B \ {j}.

Proposition 1. Define A(1)
j (τ) and A(2)

j (τ) as in (11) and let v̂l be the solution to (10) for l 6= j.

Suppose d0, d1 and τ satisfy
σ2

32eκ2ε
(
√
τ −

√
d0 max

l
Σl,l)

2 > 1

and
√
d1/M −

√
τ > 0 where

M =

(
min
1≤l≤p

Σl\−l

)2
(

2C0

(
min
1≤l≤p

1

8e2
1

(κ0l)2

)−1
+ max

1≤l≤p
Σl\−l

)
.

Then under Assumptions 1-6, we have

P

max
l∈B(2)j

|Tl| ≤
√
τ log p

→ 1,

P

 min
l∈B(1)j

|Tl| >
√
τ log p

→ 1,

where B(1)j := B \ {j} and B(2)j :=
(
B(1)j

){
\ {j}. As a consequence, P

(
A(1)
j (τ) = B(1)j

)
→ 1.

Remark 2. As shown in Proposition 1, the surrogate set in (11) has an asymptotic (nonrandom)

limit, which implies that the projection direction obtained in (8) is asymptotically independent of

the random error ε. This fact is useful in the proof of Theorem 1 later. To ensure the independence

between the projection direction and the random error, we can also employ the sample splitting

strategy, i.e., we split the samples into two subsamples, estimate the set of strong signals based on
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the first subsample and construct the projection-based estimator based on another subsample. As

we use all samples in building the projection-based estimator, our method is more efficient than

the sample splitting strategy.

Remark 3. When d0 = 0, B coincides with the support of β. Proposition 1 suggests that one can

consistently recover the support of β by thresholding the projection-based estimator.

3.2 Bias reducing projection (BRP) estimator

In this subsection, we introduce the bias reducing projection (BRP) estimator and study its

asymptotic behavior. Let ṽj be the solution to (8) based the surrogate sets in (11). Then the BRP

estimator β̃j(ṽj) is defined as

β̃j(ṽj) =
1

n
ṽ>j η̂j =

1

n
ṽ>j (Y −X−j β̂−j).

In the following, we introduce the two asymptotic results depending on whether the surrogate set is

estimated from the same data set used to find the projection direction. We first state the following

theorem on the asymptotic normality when the surrogate set is estimated via (11).

Theorem 1. Denote by ṽj the solution to (8) with A(1)
j (τ) and A(2)

j (τ) in (11). Suppose the

assumptions in Proposition 1 hold and further assume that for some δ > 0,

‖ṽj‖2+δ = oa.s.(‖ṽj‖). (13)

Then we have √
n
(
β̃j(ṽj)− βj

)
σ̂n−1/2‖ṽj‖

d→ N(0, 1). (14)

Thus an asymptotic 100(1− α)% confidence interval for βj is given by

CI(1− α) =

{
b ∈ R :

∣∣∣∣∣
√
n(β̃j(ṽj)− b)
σ̂n−1/2‖ṽj‖

∣∣∣∣∣ ≤ z1−α/2
}
, (15)

where z1−α/2 is the 1− α/2 quantile of N(0, 1).

(13) is a Lyapunov type condition which implies the central limit theorem. This type of as-

sumption regarding the projection direction has also been imposed in Dezeure et al. (2017). It can

be dropped under the Gaussian assumption on the errors. If the surrogate set is chosen based on

prior knowledge or estimated from an independent data set (e.g., based on sample splitting), then

Assumptions 1-2 can be relaxed and we have the following result.

Corollary 1. Suppose the surrogate set A(1)
j is independent of the data. Under Assumptions 3-6

and further assuming that for some δ > 0, E[|εi|2+δ] <∞ and ‖ṽj‖2+δ = oa.s.(‖ṽj‖), then (14) still

holds.
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3.3 Modified bias reducing projection (MBRP) estimator

We introduce a modified bias reducing projection (MBRP) estimator which is motivated by

Proposition 1 and the refitted Lasso idea. This new estimator would lead to a potentially smaller

order of bias compared to that of the original debiased Lasso estimator under suitable assumptions

as shown in Proposition 2. Thus, it is expected to provide better empirical coverage probability.

See more details in Section 6. To motivate the MBRP estimator, we note that the bias associated

with the BRP estimator based on some estimator β̌ for β can be written as

√
nR(vj , β−j) =

1√
n

∑
k 6=j

v>j Xk(βk − β̌k)

=
1√
n

∑
k∈B(1)j

v>j Xk(βk − β̌k) +
1√
n

∑
k∈B(2)j

v>j Xk(βk − β̌k)

where B(1)j ,B(2)j are the same as in Proposition 1. When |B(1)j | ≤ n, we can always require vj to be

exactly orthogonal to XB(1)j

. So, the bias associated with the set of strong signals becomes zero.

Thus it suffices to control the bias term associated with B(2)j by properly choosing vj and β̌, which

will be clarified below.

To find the projection direction for the MBRP estimator, we consider the optimization problem

min
uj2,vj

(
C2

n

log p
u2j2 + n−1‖vj‖2

)
,

s.t. v>j Xj = n,

n−1v>j Xk = 0, k ∈ A(1)
j ,

− uj2 ≤ n−1v>j Xk ≤ uj2, k ∈ A(2)
j .

(16)

Different from (8), we require the projection direction to be orthogonal to the column space of

XA(1)
j

in (16). Instead of using the Lasso estimator β̂, we shall adopt the refitted least squares

estimator β̌ as our preliminary estimator, i.e.,

β̌A(1)
j

= argmin
β̃

1

2n
‖Y −XA(1)

j

β̃‖2, β̌A(2)
j

= 0. (17)

The MBRP estimator is then defined as

β̃j(v̄j) =
1

n
v̄>j (Y −X−j β̌−j) = βj +

1

n
v̄>j ε+R(v̄j , β−j) (18)

where R(v̄j , β−j) = n−1v̄>j X−j(β−j − β̌−j) and v̄j is the solution to problem (16). The MBRP

estimator can be viewed as an intermediate estimator between the refitted Lasso and the BRP

estimator based on (8). While (16) is a variant of (8) seeking for a projection direction that is

exactly orthogonal to the column space of XA(1)
j

, the modified procedure uses the refitted estimator

11



for β as the refitted Lasso does as noted in Remark 1.

We argue that the bias term
√
nR(v̄j , β−j) which controls non-Gaussianity could have a potne-

tially smaller order compared to that of the original debiased Lasso estimator in the following.

Proposition 2. Denote by v̄j the solution to (16) with A(1)
j (τ) and A(2)

j (τ) defined in (11). Let β̌

be the refitted least square estimator in (17). Conditional on the event {A(2)
j = B(2)j }, we have

|
√
nR(v̄j , β−j)| ≤ Op

(√
d0‖βB(2)j

‖0
log p√
n

)
(19)

under Assumptions 1 and 5. If we further assume that√
d0‖βB(2)j

‖0 = o(s0), (20)

the bias
√
nR(v̄j , β−j) is asymptotically negligible with smaller order than that of the original

debiased Lasso given by Op(s0 log p/
√
n).

In particular, (20) holds if d0 = o(1) and d1 = O(1), i.e., the strength of weak signals is of

smaller order compared to the strong signals. It is more stringent than Assumption 1 where the

magnitudes of the set of strong signals and weak signals are allowed to be of the same order.

However, it should be mentioned that Proposition 2 is not necessary for the asymptotic normality

in Corollary 2 to be achieved. The following result shows the asymptotic normality of (18) which

can be proved by using similar arguments as those for Theorem 1.

Corollary 2. Under the assumptions in Theorem 1, we have

√
n
(
β̃j(v̄j)− βj

)
σ̂n−1/2‖v̄j‖

d→ N(0, 1),

where β̃j(v̄j) is defined in (18) and v̄j is the solution to (16).

4 Inference on a sparse linear combination of parameters

In some applications, one may be interested in conducting inference on a>β for a (sparse) loading

vector a = (a1, . . . , ap)
> ∈ Rp with ‖a‖0 = s� n. Denote by S = S(a) = {1 ≤ j ≤ p : aj 6= 0} the

support set of a. Our method can be generalized to construct estimator and conduct inference for

a>β = a>S βS . Recall that β̂ is the preliminary estimator of β. Define

ηS = Y −X−Sβ−S = XSβS + ε

and

η̂S =Y −X−S β̂−S = XSβS + ε+ X−S(β−S − β̂−S).

12



We construct an estimator for a>β in the form of n−1v>a η̂S , where va = (va,1, . . . , va,n)> is a

projection direction such that n−1v>a η̂S has tractable asymptotic limit. Notice that

n−1v>a η̂S =n−1v>a XSβS + n−1v>a ε+ n−1v>a X−S(β−S − β̂−S)

=a>S βS + (n−1v>a XS − a>S )βS + n−1v>a ε+ n−1v>a X−S(β−S − β̂−S).

Under the equality constraint that n−1v>a XS − a>S = 0 and by rearranging the above terms, we

have

√
n(n−1v>a η̂S − a>S βS) = n−1/2v>a ε+

√
nR(va, β−S), (21)

where R(va, β−S) = n−1v>a X−S(β−S − β̂−S). Similar to (6), the bias term can be decomposed into

two parts corresponding to different strengths of the signals. Let A(1)
S be the surrogate set for

the set of strong signals (excluding the elements in S), which can be obtained in a similar way as

described in Section 3.1. Following the derivations in Section 2, we can formulate the following

optimization problem to find va

min
ua1,ua2,va

(
C1

n

log p
u2a1 + C2

n

log p
u2a2 + n−1‖va‖2

)
,

s.t. v>a XS = na>S ,

− ua1 ≤ n−1v>a Xk ≤ ua1, k ∈ A(1)
S ,

− ua2 ≤ n−1v>a Xk ≤ ua2, k ∈ A(2)
S ,

(22)

where A(2)
S :=

(
A(1)
S ∪ S

){
. Denote by (ũa1, ũa2, ṽa) the solution to (22). Our estimator for a>β is

thus given by n−1ṽ>a η̂S whose asymptotic normality is established in the following theorem.

Theorem 2. With ‖a‖0 = s � n, suppose the assumptions in Proposition 1 hold and ‖ṽa‖2+δ =

oa.s.(‖ṽa‖) for some δ > 0. Then, we have

√
n
(
n−1ṽ>a η̂S − a>β

)
σ̂n−1/2‖ṽa‖

d→ N(0, 1). (23)

Thus an asymptotic 100(1− α)% confidence interval for a>β is given by

CI(1− α) =

{
b ∈ R :

∣∣∣∣∣
√
n
(
n−1ṽ>a η̂S − b

)
σ̂n−1/2‖ṽa‖

∣∣∣∣∣ ≤ z1−α/2
}
,

where z1−α/2 is the 1− α/2 quantile of N(0, 1).

We mention some existing works for inference on linear combinations of β. When the sparsity

level s0 is known, Cai and Guo (2017) obtained the minimax expected length of confidence intervals

for a>β in both the sparse and dense loading regions. They further showed that without the knowl-

edge of s0, rate-optimal adaptation in the sparse loading regime is only possible under Assumption
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6 and in the dense loading regime, adaptation to s0 is impossible. In Zhu and Bradic (2018b), the

authors proposed a test for linear hypothesis, which does not impose restriction on model sparsity or

the loading vector representing the hypothesis. Nevertheless, compared to our method, the method

by Zhu and Bradic (2018b) requires an additional sparse model to account for the dependence

between the so-called synthesized feature and the stabilized feature.

Parallel to Corollary 1, if the surrogate set is estimated based on prior information or an

independent data set, Assumptions 1-2 can be dropped and the asymptotic normality can be

established as follows.

Corollary 3. Suppose the surrogate set A(1)
j is independent of the data. Under Assumptions 3-6

and further assuming that for some δ > 0, E[|εi|2+δ] <∞ and ‖ṽa‖2+δ = oa.s.(‖ṽa‖), then (23) still

holds.

5 Selecting the tuning parameters

Bootstrap for debiased Lasso has been recently studied in both Zhang and Cheng (2017) and

Dezeure et al. (2017) to approximate the sampling distribution of the debiased Lasso estimator.

Here we propose a bootstrap-assisted approach for choosing the tuning parameters in (8), (10)

and (16). Specifically, the residual bootstrap is used to obtain the empirical coverage rate and its

standard error for selecting the optimal tuning parameters. We focus our discussions on (8) and

remark that the procedure is applicable to (10) and (16) as well. Let

ε = (ε1, . . . , εn)> = Y −Xβ̂

and ε̄i = εi − n−1
∑n

j=1 εj be the centered residual where β̂ denotes the cross-validated Lasso

estimator. Given a sequence of tuning parameters
{(
c1,j,(k), c2,j,(k)

)}K
k=1

, we first calculate

ṽj
(
c1,j,(k), c2,j,(k)

)
which is the solution to (8) given

(
c1,j,(k), c2,j,(k)

)
. Note that the projec-

tion direction ṽj only needs to be calculated once for each pair of tuning parameters. Given{
ṽj
(
c1,j,(k), c2,j,(k)

)}K
k=1

, we do the following.

1. To generate the b-th bootstrap sample, we sample n residuals with replacement from {ε̄i}ni=1

and denote the corresponding samples by ε∗b = (ε∗b,1, . . . , ε
∗
b,n)>. Then, generate Y ∗b such that

Y ∗b = Xβ̂ + ε∗b .

2. With (X,Y ∗b ), calculate the cross-validated Lasso estimator β̂∗b as well as the projection-based

estimator

β̃j(ṽj(c1,j,(k), c2,j,(k))) =
ṽj(c1,j,(k), c2,j,(k))

>(Y ∗b −X−j β̂
∗
b,−j)

n
,

where β̂∗b,−j denotes β̂∗b without the j-th component. We then calculate the 100(1 − α)%

confidence interval CI∗b,j,(k) by using (15). For each j, calculate I(β̂j ∈ CI∗b,j,(k)) which is 1 if

β̂j is covered by CI∗b,j,(k) and 0 otherwise. Also, calculate the length of CI∗b,j,(k) and denote it

as Len∗b,j,(k).
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3. Repeat the above steps for B bootstrap samples. We choose the tuning parameters for βj as

(c∗1,j,(k), c
∗
2,j,(k)) = argmin

k
AvgLenj,(k)

s.t. Ĉoverj,(k) + SE(Ĉoverj,(k)) ≥ 1− α.

where AvgLenj,(k) = B−1
∑B

b=1 Len∗b,j,(k) and

Ĉoverj,(k) =

∑B
b=1 I(β̂j ∈ CI∗b,j,(k))

B
,

SE(Ĉoverj,(k)) =

√
Ĉoverj,(k)(1− Ĉoverj,(k))

B
.

In words, the optimal pair of tuning parameters is selected with the minimum average interval

length among all the pairs whose empirical coverage rate increased by one standard error is

at least the nominal level 1− α.

6 Numerical results

6.1 Confidence interval for a single regression coefficient

We conduct simulations to evaluate the finite sample performance of the proposed BRP and

MBRP estimators. We use the R package quadprog to solve the quadratic programming problems

involved in our methods and the R package doMC with 5 cores for parallel computation. All the other

implementation details are the same as described in Section 8.1. For comparison, we implement

the debiased Lasso in van de Geer et al. (2014) (denoted by DB) using the R package hdi and

the method in Javanmard and Montanari (2014) (denoted by JM) using the code posted on the

authors’ website. As we encounter some numerical issue when implementing JM’s code for the

equicorrelation covariance structure of X in (ii). Therefore, we only report the results of JM for

the toeplitz covariance structure of X. In addition, we present the results of the double selection

approach in Belloni et al. (2014) (denoted by BCH) using the R package hdm. Due to the high

computational cost of BCH in the case of equicorrelation covariance, we only report the result for

the active set. We also implement the method in Zhu and Bradic (2018b) (denoted by “ZB” and

“ZB2”). The only difference between ZB and ZB2 lies on the choice of the constant c in the tuning

parameter η =
√
c(log p)/n in (12) of their paper. In ZB, we set c = 2 as suggested by the authors

while in ZB2, we let c = 10−3.

In (1), the rows of X are considered to be i.i.d realizations from N(0,Σ) with Σjj = 1 under

two scenarios: (i) Σj,k = 0.9|j−k| (denoted as Tp); (ii) Σj,k = 0.8 for all j 6= k (denoted as Eq). To

generate β, we consider the following two cases,

Case 1: βj
i.i.d.∼ U(0, 4) with s0 = 3, 5, 10, 15.

Case 2: Half of the non-zero βj ’s are independently generated from U(0, 0.5) and the rest are
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generated from U(2.5, 3) with s0 = 4, 8, 12, 16.

The errors are independently generated from (a) the standard normal distribution; (b) the studen-

tized t(4) distribution, i.e., t(4)/
√

2; (c) the centralized and studentized Gamma(4,1) distribution,

i.e., (Gamma(4, 1) − 4)/2. The simulation results for (b) and (c) are summarized in the supple-

mentary material. To save space, we only included the results of BCH, ZB and ZB2 for case (a).

Throughout the simulations, we set n = 100, p = 500 and the nominal level 1− α = 0.95. All the

simulation results are based on 100 independent simulation runs.

We summarize the empirical coverage probabilities, the corresponding confidence interval

lengths and the absolute value of the overall normalized bias defined as

Bias =
|
√
nR(vj , β−j)|√
σ̂2n−1‖vj‖2

(24)

for both the active set and the inactive set in Figures 5-8. The R code of Javanmard and Monta-

nari (2014) makes a finite sample adjustment. To avoid unfair comparison, we do not include their

method in the bias comparison. As inverting the test statistic in Zhu and Bradic (2018b) doesn’t

provide a closed form of confidence interval, the interval lengths of ZB and ZB2 are numerically

calculated by using the bisection-type method. To avoid computational burden therein, we only

calculate the lengths of 5 confidence intervals of ZB and ZB2 for inactive set in each simulation

runs.

We observe that (i) BRP and MBRP generally provide more accurate coverage for the active

set in comparison to DB and JM. The coverage probability for the active set based on DB can be

significantly lower than the nominal level. While BCH shows similar or slightly higher coverage

rate than BRP for the Toeplitz covariance structure, its coverage rate is lower than the nominal

level in the equicorrelation case; (ii) The interval length of BCH is generally similar or wider than

the lengths of BRP and MBRP, which is in turn wider than that of DB for the active set. Both

ZB and ZB2 tend to provide wider confidence intervals compared to the other methods. (iii) For

the equicorrelation covariance structure and s0 ≥ 10, ZB2 delivers the most accurate coverage rate

followed by MBRP. In contrast, the other methods significantly undercover in these cases. (iv) The

better coverage of the active set for our method is closely related to the smaller bias. Interestingly,

the coverage rate for the inactive set seems not sensitive to the bias; (v) The computation time

of our method is between those of DB and ZB as shown in Table 1; (vi) The bias associated with

the active set tends to be larger than that with the inactive set especially in the case of Toeplitz

covariance. BRP seems to overally reduce the bias associated with both the active and inactive sets

in such case; (vii) The coverage rate for the inactive set is usually close or above the nominal level

for all methods except for ZB. According to our extensive simulations, the over-coverage is partly

caused by the overestimation of the noise level as illustrated in Figure 22 in the supplementary

material. Overall, our proposed method appears to outperform DB, JM, BCH and ZB in terms of

coverage accuracy.

Figures 9-10 plot the bias and length of BRP and MBRP against C2 selected by the procedure
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in Section 5. It is interesting to note that for BRP, the interval width generally increases while

the bias decreases with C2. The pattern is less obvious for MBRP with most of the values of C2

concentrate around the lower end of the grid points in (25).

6.2 Confidence interval for a sparse linear combination of regression coefficients

In this subsection, we investigate the finite sample performance of the method in Section 4.

We consider the case where a linear contrast for two coefficients is of interest. We set the true

regression coefficient β = (b1, b1, b2, b3, 0, · · · , 0)>, where b1, b2, b3 are drawn independently from

U(0, 4). Depending on a, we consider the following two cases:

1. Contrast 1: a = (1,−1, 0, · · · , 0)> and a>β = b1 − b1 = 0;

2. Contrast 2: a = (0, 0, 1,−1, , 0, · · · , 0)> and a>β = b2 − b3 6= 0.

We adopt the same procedures as before for choosing the surrogate set and the tuning parameters

but the results are based on 300 independent simulation runs. The configuration for ε is the same

as in the previous subsection. The results for t-distributed and gamma errors are presented in the

supplementary material.

Figure 11 shows the empirical coverage rates, the corresponding confidence interval widths as

well as the bias for each contrast. For the Toeplitz covariance structure, BRP and MBRP provide

closer coverage rate to the nominal level but with wider interval length than DB does. In particular,

MBRP delivers the smallest bias. Thus, the better coverage for our method is again closely related

to the smaller bias in the finite sample. For the equicorrelation covariance structure, the coverage

rates of all the methods are close to the nominal level. We also note that ZB2 provides satisfactory

coverage probabilities while ZB significantly undercovers in the case of Toeplitz covariance structure.

Similar to the case for a single regression coefficient, the lengths of ZB and ZB2 are generally wider

than those of the other methods.

6.3 Real data analysis

As a real data application, we consider a dataset of riboflavin (vitamin B2) production by

Bacillus subtilis. The dataset is available in the R package hdi and has also been analyzed in van

de Geer et al. (2014) and Javanmard and Montanari (2014). It contains n = 71 observations of

p = 4088 covariates of gene expressions and a response of riboflavin production. We model the data

using (1) and consider the following multiple hypothesis testing for the significance of each gene:

Hj,0 : βj = 0 for j = 1, · · · , 4088.

We use Theorem 1 and Corollary 2 to calculate the p-values based on BRP and MBRP respectively.

The Holm procedure is adopted for multiplicity adjustment with the 5% significance level. Neither

of our methods finds any significant predictors, which is also the case for DB while there turn out

to be two significant genes YXLD-at and YXLE-at identified by JM.
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7 Concluding remark

We have proposed a new method to find the projection direction in the debiased Lasso estimator

and demonstrated its advantage over the original debiased Lasso estimator in van de Geer et

al. (2014) and the method in Javanmard and Montanari (2014). The main contributions of this

work are summarized below.

• We propose a new formulation to estimate the projection direction by properly balancing the

biases associated with the strong and weak signals respectively.

• We show that the set of strong signals can be consistently estimated and establish the asymp-

totic normality of the proposed estimator.

• We further propose a modified estimator which can lead to a smaller order of bias comparing

to the original debiased Lasso both theoretically and empirically.

• We generalize our idea to conduct inference for a sparse linear combination of regression

coefficients.

As for future research, we expect that our method can be extended to other settings such as the

generalized linear models, the Cox proportional hazards model and nonparametric additive models.

8 Supplementary Material

We empirically investigate the sensitiveness of our method to the choice of tuning parameters

in Section 8.1. Section 8.2 provides every figure and table for Sections 2 and 6 in the main paper.

Technical details and additional numerical results are gathered in Sections 8.3 and 8.4, respectively.

8.1 Empirical analysis of tuning parameters

We empirically investigate the sensitiveness of our method to the choice of tuning parameters.

Throughout this subsection, we suppose the rows of X ∈ R100×500 are i.i.d realizations from N(0,Σ)

with Σj,k = 0.9|j−k| (Toeplitz) or Σj,k = 0.8 (Equicorrelation) for j 6= k and Σjj = 1. Regression

coefficients βj ’s are generated by either Case 1 with s0 = 10 or Case 2 with s0 = 4 as described

in Section 6. The errors are independently generated from the standard normal distribution. The

nominal level is 95% and results are based on 100 independent simulation runs.

We first explore the effect of C0 on the estimation of the surrogate set and the impact of C1

and C2 on the coverage rate and interval width of the BRP-based confidence interval. The results

for βj generated from Case 2 with s0 = 4 and Toeplitz covariance Σ are summarized in Figure 1.

As seen from Panel A, the surrogate set A(τ) with τ = 2 correctly identifies the large coefficients

when C0 ≥ 2. Panels B-D provide the average coverage rate, bias and length of the BRP-based

confidence intervals for the active set over a prespecified set of grid points for (C1, C2). The coverage

probability and interval width both tend to increase with the values of C1 and C2. These results
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appear to suggest that fixing one parameter at a reasonably large value while choosing the other

parameter to balance the coverage probability and interval width would generally deliver similar

results as simultaneously selecting the two parameters.

To confirm this intuition, we set C0 = 2, C1 = 8 and use the procedure in Section 5 to select

C2 over the following prespecified grid points

{
c2,j,(k)

}K
k=1

= {0.3, 0.6, · · · , 14.7, 15.0} . (25)

We denote the corresponding procedures by “Fix-BRP” and “Fix-MBRP” and compare their per-

formance with the procedures that select all tuning parameters automatically using the method in

Section 5. Notice that fixing C0 and C1 would significantly ease the computational burden. Figure

2 presents the empirical coverage probabilities and lengths of the 95% confidence intervals and the

normalized overall bias as in (24). Fix-BRP and Fix-MBRP perform equally well in terms of the

coverage accuracy and bias as compared to BRP and MBRP but with a much lower computational

cost. Indeed similar results are observed for the other simulation setups in Section 6.1. For the rest

of the paper, we shall adopt the above procedure by fixing C0 and C1 to implement the proposed

method.

Finally, we study the impact of B and τ . Figure 3 summarizes the performance of the BRP and

MBRP-based confidence intervals with different values of B and τ . The results are not sensitive to

the bootstrap sample size B. We also observe that a larger τ tends to deliver higher coverage for

MBRP in the equicorrelation case. Unreported numerical studies show that similar phenomenon

can be observed for the other simulation setups. In Section 6 below, we shall fix B = 200 and

τ = 2.
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Figure 1: The first set of figures on empirical analysis of the effect of tuning parameters for BRP.
Panel A shows the barplots of the average cardinality of A(τ) against C0. Error bars in the barplots
represent the interval within one standard error of the average value. Panel B (C or D) shows the
heatmap of the average coverage rates (bias or length) by the BRP estimator over a prespecified
grid points for (C1, C2). The number represents the average coverage probability (bias or length)
of the 95% confidence intervals for the active set.

20



Figure 2: The second set of figures on empirical analysis of the effect of tuning parameters for BRP.
Panel A shows the barplots of the empirical coverage and Panels B-C display the boxplots for the
length and bias of the 95% confidence intervals of each method. In Panel A, the horizontal line
indicates the nominal level and error bars represent the interval within one standard deviation of
the empirical coverage. Panel D shows the boxplots of the computation time (in seconds) for each
method.
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Figure 3: Set of figures on empirical analysis of the effect of tuning parameters B and τ . Barplots
for the empirical coverage and boxplots for the length and bias of the 95% confidence intervals
for both the active and inactive sets with different values of B and τ . The horizontal line in the
barplots indicates the nominal level. Error bars in the barplots represent the interval within one
standard deviation of the empirical coverage. The data are independently generated from Case 1
with s0 = 10 and standard normal error as in Section 6.
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8.2 Appendix for Sections 2 and 6

8.2.1 For Section 2

Figure 4: Boxplots of the absolute values of the normalized bias terms defined in (24) by “With
Decomposition” and “Without Decomposition.” The non-zero βj ’s are independently generated
from U(0, 4) with s0 = 10. All the simulation settings are the same as the case with the Toeplitz
covariance structure and standard normal error in Section 6. The results are based on 100 simulation
runs.
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8.2.2 For Section 6

Figure 5: Simulation results for Case 1 with s0 = 3, 5 and standard normal random error. Barplots
for the empirical coverage and boxplots for the length and bias of the 95% confidence intervals.
The horizontal line in the barplots indicates the nominal level. Error bars in the barplots represent
the interval within one standard deviation of the empirical coverage.
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Figure 6: Simulation results for Case 1 with s0 = 10, 15 and standard normal random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals. The horizontal line in the barplots indicates the nominal level. Error bars in the barplots
represent the interval within one standard deviation of the empirical coverage.

25



Figure 7: Simulation results for Case 2 with s0 = 4, 8 and standard normal random error. Barplots
for the empirical coverage and boxplots for the length and bias of the 95% confidence intervals.
The horizontal line in the barplots indicates the nominal level. Error bars in the barplots represent
the interval within one standard deviation of the empirical coverage.
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Figure 8: Simulation results for Case 2 with s0 = 12, 16 and standard normal random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals. The horizontal line in the barplots indicates the nominal level. Error bars in the barplots
represent the interval within one standard deviation of the empirical coverage.
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Figure 9: Scatterplots of the bias and length of the BRP-based confidence interval for the active
set with s0 = 3 and Toeplitz covariance structure for X against the selected C2. The point shapes
and colors indicate whether the constructed confidence intervals include the true parameter or not.

Figure 10: Scatterplots of the bias and length of the MBRP-based confidence interval for the active
set with s0 = 8 and equicorrelation covariance structure for X against the selected C2. The point
shapes and colors indicate whether the constructed confidence intervals include the true parameter
or not.
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Figure 11: Simulation results for a sparse linear combination of β and standard normal random
error. Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals for each contrast. The horizontal line in the barplots indicates the nominal level. Error
bars in the barplots represent the interval within one standard deviation of the empirical coverage.
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Min Q1 Median Q3 Max

BRP 107.60 125.30 126.70 127.80 135.20

MBRP 89.65 104.34 105.21 106.35 109.03

DB 26.29 33.45 34.41 35.66 38.20

ZB 457.90 471.30 476.50 483.20 499.50

Table 1: Computation time (in seconds) of each method for constructing 500 confidence intervals
calculated by the R package microbenchmark. The five number summaries are obtained based on
100 independent simulation runs.

8.3 Technical Details

8.3.1 Concentration Inequalities

We first define several quantities which will appear throughout the supplementary material. Let

θj = Xj −X−jb−j and

b−j = argmin
b̃∈Rp−1

E||Xj −X−j b̃||22 = Σ−1−j,−jΣ−j,j .

Define κ1 = 2κ2, κ2j = 2κ2
√

Λ−1minΣj,j and κ3j = 2κ2Λ−1minΣj,j .

The following lemmas shows the concentration inequalities for sub-exponential and sub-gaussian

random variables which are motivated by Lemmas 5.5, 5.15 and Propositions 5.10, 5.16 in [26].

Lemma 1. Let X1, · · · , XN be i.i.d. mean-zero sub-exponential random variables with ‖Xi‖ψ1 =

K1. Then, for every a = (a1, · · · , aN )> ∈ RN×1 and any t ≥ 0, we have

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

{
−min

(
t2

8e2‖a‖2K2
1

,
t

4eK1‖a‖∞

)}
.

Proof of Lemma 1. We first derive an upper bound of the moment generating function of Xi.

By expanding the exponential function in the Taylor series, we have

E[exp(λXi)] = E

1 + λXi +

∞∑
p=2

(λXi)
p

p!

 = 1 +

∞∑
p=2

λpE[Xp
i ]

p!

≤ 1 +

∞∑
p=2

λp(K1p)
p

(p/e)p
= 1 +

∞∑
p=2

(eλK1)
p = 1 +

(eλK1)
2

1− (eλK1)

provided that |eλK1| < 1. The inequality follows by the definition of sub-exponential norm

E[Xp
i ] ≤ (K1p)

p

and Stirling’s approximation p! ≥ (p/e)p. In addition, if |eλK1| < 0.5, the quantity on the right
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hand side can be bounded above by

1 + 2(eλK1)
2 ≤ exp(2(eλK1)

2).

Thus, combining all of the above implies

E[exp(λXi)] ≤ exp(2(eλK1)
2) for |λ| < 1

2eK1
. (26)

Next, for λ > 0, we have

P

(
N∑
i=1

aiXi ≥ t

)
= P

(
exp

(
λ

N∑
i=1

aiXi

)
≥ exp(λt)

)

≤ exp(−λt)E

[
exp

(
λ

N∑
i=1

aiXi

)]
= exp(−λt)

N∏
i=1

E[exp(λaiXi)]

by the exponential Markov inequality for
∑N

i=1 aiXi. If λ is small enough so that |λ| <
(2eK1‖a‖∞)−1, (26) gives

P

(
N∑
i=1

aiXi ≥ t

)
≤ exp(−λt)

N∏
i=1

exp(2(eλaiK1)
2) = exp(−λt+ 2e2λ2‖a‖2K2

1 ).

By choosing λ = min
(
t(4e2‖a‖2K2

1 )−1, (2eK1‖a‖∞)−1
)
, we obtain

P

(
N∑
i=1

aiXi ≥ t

)
≤ exp

{
−min

(
t2

8e2‖a‖2K2
1

,
t

4eK1‖a‖∞

)}
.

The second term in min can be obtained as follows. When λ = (2eK1‖a‖∞)−1, we have

−λt+ 2e2λ2‖a‖2K2
1 = − t

2eK1‖a‖∞
+
‖a‖2

2‖a‖2∞
≤ − t

4eK1‖a‖∞

where the last inequality follows as

λ =
1

2eK1‖a‖∞
≤ t

(4e2‖a‖2K2
1 )

which implies
‖a‖2

‖a‖∞
≤ t

2eK1
.

By repeating the same argument for −Xi, we get the same bound for P(−
∑N

i=1 aiXi ≥ t), which

completes the proof. ♦

Lemma 2. Let X1, · · · , XN be i.i.d. mean-zero sub-gaussian random variables with ‖Xi‖ψ2 = K2.

Then, we have the following results.
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1. For any |ω1| ≤ 1,

E

[
exp

(
ω2
1

X2
i

4eK2
2

)]
≤ exp(ω2

1). (27)

2. For ω2 ∈ R,

E[exp(ω2Xi)] ≤ exp(8eK2
2ω

2
2). (28)

3. For every a = (a1, · · · , aN ) ∈ RN and any t ≥ 0,

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

32eK2
2‖a‖2

)
. (29)

Proof of Lemma 2. Let Yi = Xi/(2
√
eK2). We note that, for |ω2

1/2| < 1,

E[exp(ω2
1Y

2
i )] = 1 +

∞∑
k=1

ω2k
1 E[Y 2k

i ]

k!

≤ 1 +
∞∑
k=1

1

(4e)k
(2ω2

1k)k

(k/e)k
=
∞∑
k=0

(
ω2
1

2

)k
=

(
1− ω2

1

2

)−1
by the Taylor series expansion of the exponential function and Stirling’s approximation. We can

further bound

E[exp(ω2
1Y

2
i )] ≤ exp(ω2

1) for |ω1| ≤ 1

by using the inequality (1− x)−1 ≤ exp(2x) for 0 ≤ x ≤ 0.5, which completes (27).

For (28), we notice that

E[exp(ωYi)] ≤ E[ωYi + exp(ω2Y 2
i )] ≤ exp(ω2) (30)

for |ω| ≤ 1 where the first inequality follows by ex ≤ x+ ex
2

for any x ∈ R and the second one does

by (27). If |ω| ≥ 1, we have

E[exp(ωYi)] ≤ exp(ω2)E[exp(Y 2
i )] ≤ exp(ω2 + 1) ≤ exp(2ω2) (31)

due to ωYi ≤ ω2 + Y 2
i for any ω, Yi and (27). Thus, combining (30) with (31) gives

E[exp(ωYi)] ≤ exp(2ω2).

for any ω ∈ R. Letting ω2 = ω/(2
√
eK2) completes (28).
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For (29), notice that

E

[
exp(ω2

N∑
i=1

aiXi)

]
=

N∏
i=1

E [exp(ω2aiXi)]

≤
N∏
i=1

exp(8eK2
2ω

2
2a

2
i ) = exp(8eK2

2ω
2
2‖a‖2).

For ω2 ≥ 0, we have

P

(
N∑
i=1

aiXi ≥ t

)
= P

(
exp

(
ω2

N∑
i=1

aiXi

)
≥ exp(ω2t)

)

≤ exp(−ω2t)E

[
exp

(
ω2

N∑
i=1

aiXi

)]
≤ exp(−ω2t+ 8eω2

2K
2
2‖a‖2)

≤ exp

(
− t2

32eK2
2‖a‖2

)

and the same bound can be obtained for P
(
−
∑N

i=1 aiXi ≥ t
)

. Thus, combining those bounds gives

(29). ♦

8.3.2 Technical details in Section 3

Lemma 3. Under Assumption 5,

P

(
n−1‖θ>j X−j‖∞ ≥ ε0j

√
log p

n

)
≤ 2 exp

{(
1− 1

8e2
ε20j

(κ0j)2

)
log p

}

for 0 < ε0j ≤ κ0j
√
n(log p)−1.

Proof of Lemma 3. Let Z = (Z1 · · ·Zp−1) = n−1(X>j X−j − b>−jX−j>X−j). Then we have

Z =
1

n

n∑
i=1

(Xi,j − b>−jXi,−j)X
>
i,−j

where Xi,j is the value of the jth predictor of the ith observation and

X>i,−j = (Xi,1 · · ·Xi,j−1, Xi,j+1 · · ·Xi,p).

Fix some k ∈ {1, 2, . . . , p} \ {j} and let Z
(k)
i,j = (Xi,j − b>−jXi,−j)X

(k)
i,−j , where X

(k)
i,−j denotes the kth

element of Xi,−j . Then Zk = n−1
∑n

i=1 Z
(k)
ij , where E[Z

(k)
i,j ] = 0 and Z

(k)
i,j ’s are independent across

1 ≤ i ≤ n.
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We derive an upper bound for ‖Z(k)
i,j ‖ψ1 . Notice that

‖Z(k)
i,j ‖ψ1 = ‖(Xi,j − b>−jXi,−j)X

(k)
i,−j‖ψ1 ≤ 2‖Xi,j − b>−jXi,−j‖ψ2‖X

(k)
i,−j‖ψ2

= 2‖X>i,·γ−j‖ψ2‖X
(k)
i,−j‖ψ2

≤ 2κ2‖γ−j‖2

≤ 2(1 +
√

Λ−1minΣj,j)κ
2,

where X>i,· = (Xi,j , X
>
i,−j) and γ>−j = (1,−b>−j). Here, the first inequality holds from the fact that

‖XY ‖ψ1 ≤ 2‖X‖ψ2‖Y ‖ψ2 for any two random variables X,Y ; the second inequality comes from

q−1/2(E|X>i,·γ−j |q)1/q = ‖γ−j‖q−1/2{E|X>i,·(γ−j/‖γ−j‖)|q}1/q ≤ ‖γ−j‖κ

and the third inequality follows from

‖γ−j‖2 =
√

1 + ‖b−j‖2 ≤ 1 + ‖b−j‖ ≤ 1 +
√
λmax(Σ−1−j,−j)Σj,j .

By Lemma 1, for any ε > 0, we have

P

(
1

n

∣∣∣∣∣
n∑
i=1

Z
(k)
i,j

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

{
−nmin

(
1

8e2

(
ε

κ0j

)2

,
1

4e

ε

κ0j

)}
.

Choosing ε = ε0j
√
n−1 log p and assuming that n ≥ ε20j(κ0j)−2 log p, then

P

(
1

n

∣∣∣∣∣
n∑
i=1

Z
(k)
i,j

∣∣∣∣∣ ≥ ε0j
√

log p

n

)
≤ 2 exp

{
− 1

8e2
ε20j

(κ0j)2
log p

}
.

The result follows from the union bound over k ∈ {1, 2, . . . , p− 1}. ♦

An implication of Lemma 3 is that

n−1‖θ>j X−j‖∞ ≤ ε0j

√
log p

n
(32)

with probability tending to 1 for a fixed ε0j such that ε20 > (κ0j)
28e2. We introduce an additional

result below for a later use.

Lemma 4. Under Assumption 5, we have

P

(∣∣∣∣∣ n

θ>j Xj
− 1

Σj\−j

∣∣∣∣∣ ≤ ε1j
)
≥ 1− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ1

)2

n


− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ2j

)2

n
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for 0 < ε1j ≤ min{(Σj\−j)
−1, 4 min(κ1, κ2j)(Σj\−j)

−2} and

P
(∣∣∣∣‖θj‖2n

−Σj\−j

∣∣∣∣ ≤ ε2j) ≥ 1− 2 exp

{
− 1

8e2

(
ε2j
3κ1

)2

n

}
− 2 exp

{
− 1

8e2

(
ε2j

6κ2j

)2

n

}

− 2 exp

{
− 1

8e2

(
ε2j

3κ3j

)2

n

}

for 0 < ε2j ≤ 3 min(κ1, 2κ2j , κ3j).

Proof of Lemma 4. We notice that

θ>j Xj = X>j Xj −
n∑
i=1

p−1∑
k=1

b−j,kX
(k)
i,−jXi,j ,

where b−j,k is the kth element of b−j and X
(k)
i,−j is the kth element of X−j . Then, we see that

θ>j Xj

n
−Σj\−j =

1

n

n∑
i=1

(X2
i,j −Σj,j)−

1

n

n∑
i=1

(
p−1∑
k=1

b−j,kX
(k)
i,−jXi,j −Σj,−jΣ

−1
−j,−jΣ−j,j

)
.

By Lemma 1,

P

(∣∣∣∣∣ 1n
n∑
i=1

(X2
i,j −Σj,j)

∣∣∣∣∣ ≤ δj
)
≥ 1− 2 exp

{
− 1

8e2

(
δj
κ1

)2

n

}

P

(∣∣∣∣∣ 1n
n∑
i=1

(
p−1∑
k=1

b−j,kX
(k)
i,−jXi,j −Σj,−jΣ

−1
−j,−jΣ−j,j

)∣∣∣∣∣ ≤ δj
)
≥ 1− 2 exp

{
− 1

8e2

(
δj
κ2j

)2

n

}

for 0 < δj ≤ min(κ1, κ2j). Also, for ε1j ≤ (Σj\−j)
−1, we have{∣∣∣∣∣ n

θ>j Xj
− 1

Σj\−j

∣∣∣∣∣ ≥ ε1j
}

⊂
[{∣∣∣∣∣ 1n

n∑
i=1

(X2
i,j −Σj,j)

∣∣∣∣∣ ≥ Σ2
j\−j

4
ε1j

}
⋃{∣∣∣∣∣ 1n

n∑
i=1

(
p−1∑
k=1

b−j,kX
(k)
i,−jXi,j −Σj,−jΣ

−1
−j,−jΣ−j,j

)∣∣∣∣∣ ≥ Σ2
j\−j

4
ε1j

}]
.
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Thus, for ε1j ≤ min{(Σj\−j)
−1, 4 min(κ1, κ2j)(Σj\−j)

−2}, we have

P

(∣∣∣∣∣ n

θ>j Xj
− 1

Σj\−j

∣∣∣∣∣ ≤ ε1j
)
≥ 1− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ1

)2

n


− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ2j

)2

n


which proves the first inequality. Next, we note that

‖θj‖2

n
−Σj\−j =

(
X>j Xj

n
−Σj,j

)
︸ ︷︷ ︸

(∗)

−2

(
X>j X−j

n
−Σj,−j

)
Σ−1−j,−jΣ−j,j︸ ︷︷ ︸

(∗∗)

+ Σj,−jΣ
−1
−j,−j

(
X−j

>X−j
n

−Σ−j,−j

)
Σ−1−j,−jΣ−j,j︸ ︷︷ ︸

(∗∗∗)

.

The concentration inequalities for (∗) and (∗∗) are given respectively as

P

(∣∣∣∣∣ 1n
n∑
i=1

(X2
i,j −Σj,j)

∣∣∣∣∣ ≤ ε2j
3

)
≥ 1− 2 exp

{
− 1

8e2

(
ε2j
3κ1

)2

n

}
, (33)

and

P

(∣∣∣∣∣ 1n
n∑
i=1

(
p−1∑
k=1

b−j,kX
(k)
i,−jXi,j −Σj,−jΣ

−1
−j,−jΣ−j,j

)∣∣∣∣∣ ≤ ε2j
6

)

≥1− 2 exp

{
− 1

8e2

(
ε2j

6κ2j

)2

n

}
, (34)

for 0 < ε2j ≤ min(3κ1, 6κ2j). Also, we notice that

(∗ ∗ ∗) =
1

n

n∑
i=1

(
p−1∑
k=1

X
(k)
i,−jb−j,k

)2

−Σj,−jΣ
−1
−j,−jΣ−j,j .

Lemma 1 gives us

P

∣∣∣∣∣∣ 1n
n∑
i=1

(p−1∑
k=1

X
(k)
i,−jb−j,k

)2

−Σj,−jΣ
−1
−j,−jΣ−j,j

∣∣∣∣∣∣ ≤ ε2j
3


≥1− 2 exp

{
− 1

8e2

(
ε2j

3κ3j

)2

n

}
(35)
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for 0 < ε2j ≤ 3κ3j . Combining (33), (34) and (35) finishes the proof. ♦

The following result directly follows by Lemmas 3 and 4.

Corollary 4. Let v̆j = nθj/(θ
>
j Xj) and ŭj = n−1‖v̆>j X−j‖∞. Under Assumption 5, v̆j satisfies

v̆>j Xj = n,

P

(
n−1‖v̆j‖2 ≤

(
1

Σj\−j
+ ε1j

)2

(Σj\−j + ε2j)

)

≥ 1− 2 exp

{
− 1

8e2

(
ε2j

3κ1j

)2

n

}
− 2 exp

{
− 1

8e2

(
ε2j

6κ2j

)2

n

}
− 2 exp

{
− 1

8e2

(
ε2j

3κ3j

)2

n

}

− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ1j

)2

n

− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ2j

)2

n

 ,

and

P

(
ŭj ≤ ε0j

√
log p

n

(
1

Σj\−j
+ ε1j

))

≥ 1− 2 exp

{(
1− 1

8e2
ε20j

(κ0j)2

)
log p

}
− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ1

)2

n


− 2 exp

− 1

8e2

(
Σ2
j\−jε1j

4κ2j

)2

n

 ,

for ε0j , ε1j , ε2j given in Lemmas 3 and 4.

Lemma 5. Let Rl = n−1v̂>l X−l(β−l − β̂−l) where v̂l and ûl denote the solution to (10). Then,

max
l
Rl = op(1).

Proof of Lemma 5. According to the definition of v̂l,

C2
n

log p
û2l + n−1‖v̂l‖2 ≤ C2

n

log p
ŭ2l + n−1‖v̆l‖2

where ûl = n−1‖v̂>l X−l‖∞, v̆l = nθl/θ
>
l Xl and ŭl = n−1‖v̆lX−l‖∞. Then, we have√

C2
n

log p
ûl ≤ C2

n

log p
ŭ2l + n−1‖v̆l‖2

which implies√
C2

n

log p
max
l
n−1‖v̂>l X−l‖∞ ≤

(
max
l

(Σl\−l)
−1 + ε′1

)2(
C2(ε

′
0)

2 + max
l

Σl\−l + ε′2

)
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with probability tending to 1 by (37). Therefore,

max
l
Rl ≤ max

l
n−1‖v̂>l X−l‖∞

√
n‖β̂ − β‖1 = op(1)

by Assumptions 3 and 6. ♦

The following inequalities are direct consequences of Lemmas 3-4 and the definition of v̂l.

Corollary 5. Let v̂l be the solution to (10). Then, we have

P

(
max
l
n−1‖θ>l X−l‖∞ ≥ ε′0

√
log p

n

)
≤ 2 exp

{
− 1

8e2

(
min
l

1

κ20l

)
(ε′0)

2 log p+ 2 log p

}
,

P
(

max
l

n

|θ>l Xl|
≤ max

l
(Σl\−l)

−1 + ε′1

)
≥ 1− 2 exp

{
− 1

8e2

(
min
l

(Σl\−l)
4

(4κ1)2

)
(ε′1)

2n+ log p

}

− 2 exp

{
− 1

8e2

(
min
l

(Σl\−l)
4

(4κ2l)2

)
(ε′1)

2n+ log p

}
,

P
(

max
l

‖θl‖2

n
≤ max

l
Σl\−l + ε′2

)
≥ 1− 2 exp

{
− 1

8e2(3κ1)2
(ε′2)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

1

(6κ2l)2

)
(ε′2)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

1

(3κ3l)2

)
(ε′2)

2n+ log p

}
,

and

P
(

max
l
n−1‖v̂l‖2 ≤M ′

)
≥ 1− 2 exp

{
− 1

8e2

(
min
l

1

(κ0l)2

)
(ε′0)

2 log p+ 2 log p

}
− 2 exp

{
− 1

8e2

(
min
l

(Σl\−l)
4

(4κ1)2

)
(ε′1)

2n+ log p

}

− 2 exp

{
− 1

8e2

(
min
l

(Σl\−l)
4

(4κ2l)2

)
(ε′1)

2n+ log p

}

− 2 exp

{
− 1

8e2(3κ1)2
(ε′2)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

1

(6κ2l)2

)
(ε′2)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

1

(3κ3l)2

)
(ε′2)

2n+ log p

}
,

where

M ′ = (max
l

(Σl\−l)
−1 + ε′1)

2(C2ε
′2
0 + max

l
Σl\−l + ε′2) (36)

for 0 < ε′0 ≤ (minl κ0l)
√
n(log p)−1, 0 < ε′1 ≤ minl

{
min((Σl\−l)

−1, 4 min(κ1, κ2l)(Σl\−l)
−2)
}

and

0 < ε′2 ≤ minl(min(3κ1, 6κ2l, 3κ3l)).
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Under Assumption 6, Corollary 5 implies that

max
l
n−1‖θ>l X−l‖∞ ≤ ε′0

√
log p

n
,

max
l

n

|θ>l Xl|
≤ max

l
(Σl\−l)

−1 + ε′1,

max
l
n−1‖θl‖2 ≤ max

l
Σl\−l + ε′2,

max
l
n−1‖v̂l‖2 ≤M ′,

(37)

with probability tending to 1 for a fixed (ε′0)
2 minl(κ0l)

−2 > 16e2 and fixed ε′1, ε
′
2 as in Corollary 5.

Proof of Proposition 1. Noting that (n−1/2‖v̂l‖)−1 ≤ ‖Xl‖/
√
n, we have

|Tl| =
σ

σ̂

∣∣∣∣∣
√
n(β̃l(v̂l)− βl)
σn−1/2‖v̂l‖

+

√
nβl

σn−1/2‖v̂l‖

∣∣∣∣∣
=
σ

σ̂

∣∣∣∣ 1

σn−1/2‖v̂l‖

(
1√
n
v̂>l ε+

√
nRl

)
+

√
nβl

σn−1/2‖v̂l‖

∣∣∣∣
≤ σ

σ̂

(
|Zl|+

∣∣∣∣ √
nRl

σn−1/2‖v̂l‖

∣∣∣∣+

∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣)
≤ σ

σ̂

(
|Zl|+

‖Xl‖√
n

∣∣∣∣√nRlσ

∣∣∣∣+
‖Xl‖√
n

∣∣∣∣√nβlσ

∣∣∣∣) ,
and

|Tl| ≥
σ

σ̂

(∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣− |Zl| − ∣∣∣∣ √
nRl

σn−1/2‖v̂l‖

∣∣∣∣)
≥ σ

σ̂

(∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣− |Zl| − ‖Xl‖√
n

∣∣∣∣√nRlσ

∣∣∣∣) ,
where Rl = n−1v̂>l X−l(β−l − β̂−l). We also observe that

[{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≤ ε}⋂
max
l∈B(2)j

|Zl|+D′ max
l∈B(2)j

∣∣∣∣√nRlσ

∣∣∣∣+D′ max
l∈B(2)j

∣∣∣∣√nβlσ

∣∣∣∣ ≤√τ log p


⋂{

max
l

‖Xl‖√
n
≤ D′

}]
⊂

max
l∈B(2)j

|Tl| ≤
√
τ log p

 ,

and [ min
l∈B(1)j

∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣− max
l∈B(1)j

|Zl| −D′ max
l∈B(1)j

∣∣∣∣√nRlσ

∣∣∣∣ >√τ log p


⋂{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≤ ε}⋂{
max
l

‖Xl‖√
n
≤ D′

}]
⊂

 min
l∈B(1)j

|Tl| >
√
τ log p
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and where D′ =
√

maxl Σl,l + ε′ for 0 < ε′ ≤ 2κ2. Note that

P
{

max
l

‖Xl‖√
n
≤ D′

}
≥ 1− 2 exp

{
− 1

8e2
(ε′)2

4κ4
n+ log p

}
. (38)

We prove Proposition 1 in the following two steps.

1. Under Assumption 1, it suffices to show that

P

max
l∈B(2)j

|Zl|+
D′

σ
max
l∈B(2)j

|
√
nRl| ≤ c1

√
log p

→ 1,

where c1 =
√
τ −D′

√
d0. We have, for ε′′ > 0,

P

max
l∈B(2)j

|Zl|+
D′

σ
max
l∈B(2)j

|
√
nRl| ≤ c1

√
log p


≥P

max
l∈B(2)j

|Zl| ≤ c1
√

log p− ε′′
⋂

D′σ max
k∈B(2)j

|
√
nRl| ≤ ε′′




≥P

max
l∈B(2)j

|Zl| ≤ c1
√

log p− ε′′
+ P

D′
σ

max
l∈B(2)j

|
√
nRl| ≤ ε′′

− 1

≥P

D′
σ

max
k∈B(2)j

|
√
nRk| ≤ ε′′

− 2p exp

{
−σ

2(c1
√

log p− ε′′)2

32eκ2ε

}
.

Here the last inequality follows by Lemma 2 under Assumption 2, i.e.,

P

max
l∈B(2)j

|Zl| ≥ c1
√

log p− ε′′


≤P

 ⋃
l∈B(2)j

{
|Zl| ≥ c1

√
log p− ε′′

}
≤|B(2)j | × P

(∣∣∣∣∣ 1

σ‖v̂l‖

n∑
i=1

v̂liεi

∣∣∣∣∣ ≥ c1√log p− ε′′
)

≤|B(2)j | × 2× exp

{
−σ

2(c1
√

log p− ε′′)2

32eκ2ε

}
(39)

conditional on v̂l. By the assumption

σ2

32eκ2ε
(
√
τ −

√
d0 max

l
Σl,l)

2 > 1,
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we have
σ2

32eκ2ε
c21 > 1

for small enough ε′. Together with (38), Lemma 5 and Assumption 4, we obtain

P

max
l∈B(2)j

|Tl| ≤
√
τ log p

→ 1.

2. We define c2 =
√
d1/M ′′ −

√
τ , where

M ′′ =

(
min
l

Σl\−l + ε′1

)2
(

2C2

8e2

(
min
l

1

(κ0l)2

)−1
+ max

l
Σl\−l + 2ε′2

)

by letting (ε′0)
2 = 2

(
(8e2)−1 minl(κ0l)

−2)−1 + ε′2 in (36). We have, for ε′′ > 0,

P

 min
l∈B(1)j

∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣− max
l∈B(1)j

|Zl| −D′ max
l∈B(1)j

∣∣∣∣√nRlσ

∣∣∣∣ >√τ log p


≥P

 min
l∈B(1)j

∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣− max
l∈B(1)j

|Zl| >
√
τ log p+ ε′′

⋂
D′σ max

l∈B(1)j

∣∣√nRl∣∣ ≤ ε′′



≥P

 min
l∈B(1)j

∣∣∣∣ √nβlσ
√
M ′′

∣∣∣∣− max
l∈B(1)j

|Zl| >
√
τ log p+ ε′′

⋂
 min
l∈B(1)j

1

n−1/2‖v̂l‖
≥ 1√

M ′′




+ P

D′
σ

max
l∈B(1)j

|
√
nRl| ≤ ε′′

− 1

≥P

 min
l∈B(1)j

∣∣∣∣ √nβlσ
√
M ′′

∣∣∣∣− max
l∈B(1)j

|Zl| >
√
τ log p+ ε′′

+ P

max
l∈B(1)j

n−1‖v̂l‖2 ≤M ′′


+ P

D′
σ

max
l∈B(1)j

|
√
nRl| ≤ ε′′

− 2

≥P

max
l∈B(1)j

|Zl| < c2
√

log p− ε′′
+ P

max
l∈B(1)j

n−1‖v̂l‖2 ≤M ′′
+ P

D′
σ

max
l∈B(1)j

|
√
nRl| ≤ ε′′

− 2

≥1− 2
∣∣∣B(1)j ∣∣∣ exp

{
− σ2

32eκ2ε
(b
√

log p− ε′′)2
}

+ P

 max
k∈B(1)j

n−1‖v̌k‖2 ≤M ′′


+ P

D′
σ

max
k∈B(1)j

|
√
nRk| ≤ ε′′

− 2

where the last inequality follows from (39). By the assumption
√
d1/M −

√
τ > 0, we have
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c2 =
√
d1/M ′′−

√
τ > 0 for small enough ε′1, ε

′
2. Since

∣∣∣B(1)j ∣∣∣ ≤ s0 � p, by (37), (38), Lemma

5 and Assumption 4, we get P
(

min
l∈B(1)j

|Tl| >
√
τ log p

)
→ 1.

♦

Proof of Theorem 1. The argument below is conditional on the event {A(k)
j (τ) = B(k)j for k =

1, 2} which occurs almost surely by Proposition 1. Let ŭj1 = max
k∈A(1)

j (τ)
n−1|v̆>j Xk| and ŭj1 =

max
k∈A(2)

j (τ)
n−1|v̆>j Xk| where v̆j is as in Corollary 4. Then, (ŭj1, ŭj1, v̆j) is a feasible point to

problem (8). By the definition of ṽj ,

C1
n

log p
ũ2j1 + C2

n

log p
ũ2j2 + n−1‖ṽj‖2 ≤ C1

n

log p
ŭ2j1 + C2

n

log p
ŭ2j2 + n−1‖v̆j‖2,

where ũj1 = max
k∈A(1)

j

n−1|ṽ>j Xk| and ũj2 = max
k∈A(2)

j

n−1|ṽ>j Xk|. Then, for i = 1, 2, we must

have √
Ci

n

log p
ũji ≤ max{C1, C2}ε20j

(
1

Σj\−j
+ ε1j

)2

+

(
1

Σj\−j
+ ε1j

)2

(Σj\−j + ε2j),

with probability tending to 1 by Corollary 4. Then, by Assumptions 3 and 6,

|
√
nR(ṽj , β−j)| =n−1/2|ṽ>j X−j(β−j − β̂−j)| ≤ n−1 max

k 6=j
|ṽ>j Xk|

√
n‖β̂−j − β−j‖1 = op(1).

Hence, we obtain

√
n(β̃j(ṽj)− βj) =

1√
n
ṽ>j ε+ op(1). (40)

Note that ∑n
i=1E[(ṽj,iεi)

2+δ|ṽj ]
σ2+δ‖ṽj‖2+δ

=
Eε2+δ1

σ2+δ
‖ṽj‖2+δ2+δ

‖ṽj‖2+δ
= oa.s.(1).

Conditional on the event that {‖ṽj‖2+δ/‖ṽj‖ → 0}, the Lyapunov condition is satisfied and thus

ṽ>j ε/{σ‖ṽj‖} converges to N(0, 1). If ε ∼ N(0, σ2I), ṽ>j ε/{σ‖ṽj‖} ∼ N(0, 1) conditional on ṽj . The

conclusion thus follows from (40) and Assumption 4 by the Slutsky’s theorem. ♦

Proof of Proposition 2. All the arguments below are conditional on the event {A(2)
j = B(2)j }

which occurs almost surely by Proposition 1. With the projection direction v̄j from (16) and the
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refitted least square estimator β̌, the bias (6) reduces to

√
nR(v̄j , β−j) =

1√
n

∑
k 6=j

v̄>j Xk(βk − β̌k)

=
1√
n

∑
k∈B(1)j

v̄>j Xk(βk − β̌k) +
1√
n

∑
k∈B(2)j

v̄>j Xk(βk − β̌k)

=
1√
n

∑
k∈A(1)

j

v̄>j Xk(βk − β̌k) +
1√
n

∑
k∈A(2)

j

v̄>j Xk(βk − β̌k)

=
1√
n

∑
k∈A(2)

j

v̄>j Xkβk,

where we have used the fact that v̄>j Xk = 0 for k ∈ A(1)
j from (16) and β̌A(2)

j

= 0 by (17). Thus,

we have
|
√
nR(v̄j , β−j)| ≤ ‖n−1v̄>j X−j‖∞

√
n‖βA(2)

j

‖1

≤ ‖n−1v̄>j X−j‖∞σ
√
d0 log p‖βB(2)j

‖0

≤ Op

(√
log p

n

)
σ
√
d0 log p‖βB(2)j

‖0

where the second inequality holds by Assumption 1 under the event {A(2)
j = B(2)j }. The last

inequality follows from the fact that ‖n−1v̄>j X−j‖∞ = Op(
√

log p/n), which can be verified by

using similar arguments as in the proof of Corollary 1 together with the definition of v̄j under

Assumption 5. The last statement follows immediately from condition (20). ♦

8.3.3 Technical details in Section 4

We first state the following results which are parallel to Lemma 3 and the first inequality in

Corollary 5. As the proof is similar to the one in Lemma 3, we omit the details.

Corollary 6. Let θl = Xl−X−Sbl with bl = argminb̃E‖Xl−X−S b̃‖2 for l ∈ S. Under Assumption

5,

P

(
n−1‖θ>l X−S‖∞ ≥ ξ0l

√
log p

sn

)
≤ 2 exp

{(
1− cl,S

δ20l
s(ξ0l)2

)
log p

}
for 0 < ξ0l ≤ κ0l

√
sn(log p)−1 where cl,S > 0 is an absolute constant and κ0l =

2

(
1 +

√
Λ−1minΣl,l

)
κ2. As a consequence, we have

P

(
max
l∈S

n−1‖θ>l X−S‖∞ ≥ ξ′0

√
log p

sn

)
≤ 2 exp

{
−
(

min
l

cl,S
s(κ0l)2

)
(ξ′0)

2 log p+ 2 log p

}
.

for 0 < ξ′0 ≤ minl κ0l
√
sn(log p)−1.
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The following results are introduced for the proof of Theorem 2 which follows from a direct

application of Proposition 2.1 in [27] .

Lemma 6. For every δ > 0, we have

P
(
‖n−1X>SXS −ΣS,S‖ ≤

√
4

Cκ

s

n
log

2

δ

)
≥ 1− δ,

where Cκ > 0 is an absolute constant which only depends on δ and κ.

We next introduce the following lemma which provides an upper bound for the operator norm

of a matrix.

Lemma 7. Let B be a m × m matrix and Nε be an ε-net of the unit sphere Sm−1 for some

ε ∈ (0, 1/2). Then

‖B‖ ≤ (1− 2ε)−1 sup
c,d∈Nε

∣∣∣c>Bd
∣∣∣ .

Proof of Lemma 7. For any c, d ∈ Sm−1, we can choose cN , dN ∈ Nε such that max{‖c −
cN ‖, ‖d− dN ‖} ≤ ε. Some algebra gives us

c>Bd = c>NBdN + (c− cN )>Bd+ c>NB(d− dN ),

which implies that ∣∣∣c>Bd
∣∣∣ ≤ 2ε‖B‖+ sup

cN ,dN∈Nε

∣∣∣c>NBdN

∣∣∣ .
Taking supremum over all c, d ∈ Sm−1 and rearranging terms give us the desired result. ♦

Lemma 8. For every δ > 0, we have

P
(
‖(n−1X>SX−S −ΣS,−S)Σ−1−S,−SΣ−S,S‖ ≤ 3

√
8

Cκ′
log

2

δ

s

n

)
≥ 1− δ

where Cκ′ > 0 denotes an absolute constant which only depends on κ′ = 2κ2
√

Λ−1minD
2.

Proof of Lemma 8. We prove the result in several steps. First, we bound the operator norm by

using the so-called ε-net argument. Then we apply the concentration inequality for sub-exponential

random variables and finally use the union bound to finish the proof. For two vectors a, b ∈ Rq×1,
write 〈a, b〉 = a>b. By Lemma 7 and Lemma 5.2 in [27], we have

‖(n−1X>SX−S −ΣS,−S)Σ−1−S,−SΣ−S,S‖

= sup
c,d∈Ss−1

∣∣∣∣∣ 1n
n∑
i=1

(
〈Xi,S , c〉〈ΣS,−SΣ−1−S,−SXi,−S , d〉 − c>ΣS,−SΣ−1−S,−SΣ−S,Sd

)∣∣∣∣∣
≤3 sup

c,d∈N1/3

∣∣∣∣∣ 1n
n∑
i=1

(
〈Xi,S , c〉〈ΣS,−SΣ−1−S,−SXi,−S , d〉 − c>ΣS,−SΣ−1−S,−SΣ−S,Sd

)∣∣∣∣∣
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where N1/3 denotes a 1/3-net of Ss−1 with the covering number |N1/3| ≤ 7s.

Let us fix c, d ∈ N1/3. Because each row of XS and X−S is independent sub-gaussian random

vector, we can apply the concentration inequality in Corollary 5.17 of [26]. Specifically, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

(
〈Xi,S , c〉〈ΣS,−SΣ−1−S,−SXi,−S , d〉 − c>ΣS,−SΣ−1−S,−SΣ−S,Sd

)∣∣∣∣∣ ≥ ε
)

≤2 exp

(
−cn ε2

(κ′)2

)
provided that ε2 ≤ (κ′)2, where ‖〈Xi,S , c〉〈ΣS,−SΣ−1−S,−SXi,−S , d〉‖ψ1 ≤ κ′ and c > 0 is an absolute

constant. Applying the union bound over c, d ∈ N1/3, we have

sup
c,d∈N1/3

∣∣∣∣∣ 1n
n∑
i=1

(
〈Xi,S , c〉〈ΣS,−SΣ−1−S,−SXi,−S , d〉 − c>(ΣS,−SΣ−1−S,−SΣ−S,S)d

)∣∣∣∣∣ ≥ ε
with probabiliity at most 2|N1/3|2 exp

[
−cnε2/(κ′)2

]
, which implies

P
(
‖(n−1X>SX−S −ΣS,−S)Σ−1−S,−SΣ−S,S‖ < 3ε

)
≥ 1− 2|N1/3|2 exp

[
−cn

( ε
κ′

)2]
≥ 1− 2 exp

[
4s− nε2Cκ′

]
where Cκ′ = c/(κ′)2. Then by letting ε2 = (8/Cκ′) log(2/δ)(s/n), we have

P
(
‖(n−1X>SX−S −ΣS,−S)Σ−1−S,−SΣ−S,S‖ ≤ 3

√
8

Cκ′
log

2

δ

s

n

)
≥ 1− δ

which completes the proof. ♦

Lemma 9. Let Â = n−1X>SΘ and A = ΣS,S −ΣS,−SΣ−1−S,−SΣ−S,S. Under the assumption that

s/n = o(1) and ‖A−1‖ ≤ B for some constant B > 0, we have ‖w‖ = Op(‖aS‖).

Proof of Lemma 9. Note that

‖w‖ = ‖(n−1X>SΘ)−1aS‖ ≤ ‖Â−1‖‖aS‖.

We want to bound ‖Â−1‖. Using the properties of operator norm, we have

‖Â−1‖ ≤ ‖Â−1 −A−1‖+ ‖A−1‖ ≤ ‖Â−1‖‖A−1‖‖A− Â‖+ ‖A−1‖.

Rearranging the terms, we obtain

‖Â−1‖(1− ‖A−1‖‖A− Â‖) ≤ ‖A−1‖.
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With the assumption ‖A−1‖ ≤ B, we have

1− ‖A−1‖‖A− Â‖ ≥ 1−B‖A− Â‖.

Under the assumption s/n = o(1), by Lemmas 6 and 8, we have ‖A − Â‖ = op(1). Thus 1 −
‖A−1‖‖A − Â‖ is bounded from below by a positive constant with probability tending to one.

Thus

‖Â−1‖ ≤ (1− ‖A−1‖‖A− Â‖)−1‖A−1‖ ≤ (1−B‖A− Â‖)−1‖A−1‖

which implies that ‖Â−1‖ = Op(1). The conclusion follows directly. ♦

Lemma 10. Let Θ ∈ Rn×s where the l-th column vector is θl for l ∈ S as in Corollary 6 and

v̆a = Θw where w = (n−1X>SΘ)−1aS. Then, under Assumption 5 and ‖aS‖ = O(1), we have

n−1‖v̆a‖2 = Op(1).

Proof of Lemma 10. We note that

‖Θw‖2 ≤ ‖XS −X−SΣ−1−S,−SΣ−S,S‖2‖w‖22 ≤ 2 {‖XS‖2 + ‖X−SΣ−1−S,−SΣ−S,S‖2}︸ ︷︷ ︸
I

‖w‖22.

We shall control I below. Lemma 5.3 in [27] gives us

‖XS‖2 ≤ 4 max
c∈N1/2

c>X′SXSc,

‖X−SΣ−1−S,−SΣ−S,S‖2 ≤ 4 max
d∈N1/2

d>ΣS,−SΣ−1−S,−SX′−SX−SΣ−1−S,−SΣ−S,Sd.

Let Q = ΣS,−SΣ−1−S,−S
(
n−1X>−SX−S −Σ−S,−S

)
Σ−1−S,−SΣ−S,S . Since the elements of the terms in-

side the maximization can be expressed as a sum of independent sub-exponential random variables,

we can use similar arguments as in the proof of Lemma 3 to show that for every δ > 0,

P
(
‖Q‖ ≤

√
4

Cκ′

s

n
log

2

δ

)
≤ 1− δ

where Cκ′ > 0 is an absolute constant which only depends on κ′ = 2κ2
√

Λ−1minD
2. Together with

Lemma 6, we have

n−1{‖XS‖2 + ‖X−SΣ−1−S,−SΣ−S,S‖2} ≤C0

{
op(1) + λmax(ΣS,S) + λmax(ΣS,−SΣ−1−S,−SΣ−S,S)

}
≤C0 {op(1) + 2λmax(ΣS,S)} ,

for some constant C0. Therefore, we have

n−1‖Θw‖22 ≤ 2C0(op(1) + 2Λ−2min)Op(‖aS‖2) = Op(1).

♦
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Proof of Theorem 2. The arguments below are conditional on the sets A(1)
S and A(2)

S which

have nonrandom limits by Proposition 1. Let ŭa1 = max
k∈A(1)

j

n−1|v̆>a Xk| and ŭa2 =

max
k∈A(2)

j

n−1|v̆>a Xk|, where v̆a is as in Lemma 10. Then, (ŭa1, ŭa2, v̆a) is a feasible point to

problem (22). By the definition of ṽa,

C1
n

log p
ũ2a1 + C2

n

log p
ũ2a2 + n−1‖ṽa‖2 ≤ C1

n

log p
ŭ2a1 + C2

n

log p
ŭ2a2 + n−1‖v̆a‖2.

Then, for i = 1, 2, we must have√
Ci

n

log p
ũai ≤ max{C1, C2}

n

log p
max
k/∈S

n−1|w>Θ>Xk|+ n−1‖v̆a‖2

≤ max{C1, C2}‖w‖(ξ′0)2 +Ma

with probability tending to 1 for 0 < ξ′0 ≤ minl κ0l
√
sn(log p)−1 and some constant Ma according

to Corollary 6 and Lemma 10. Then, by Assumptions 3 and 6,

|
√
nR(ṽa, β−S)| =n−1/2|ṽ>a X−S(β−S − β̂−S)| ≤ n−1 max

k/∈S
|ṽ>a Xk|

√
n‖β̂−S − β−S‖1 = op(1).

Hence, we obtain

√
n(β̃S(ṽa)− a>S βS) =

1√
n
ṽ>a ε+ op(1). (S1)

Finally we can apply the central limit theorem as in the proof of Theorem 1, which completes the

proof. ♦
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8.4 Additional numerical results

Figure 12: Simulation results for Case 1 with s0 = 3, 5 and t-distributed random error. Barplots
for the empirical coverage and boxplots for the length and bias of the 95% confidence intervals.
The horizontal line in the barplots indicates the nominal level. Error bars in the barplots represent
the interval within one standard deviation of the empirical coverage.

48



Figure 13: Simulation results for Case 1 with s0 = 10, 15 and t-distributed random error. Barplots
for the empirical coverage and boxplots for the length and bias of the 95% confidence intervals.
The horizontal line in the barplots indicates the nominal level. Error bars in the barplots represent
the interval within one standard deviation of the empirical coverage.
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Figure 14: Simulation results for Case 1 with s0 = 4, 8 and t-distributed random error. Barplots
for the empirical coverage and boxplots for the length and bias of the 95% confidence intervals.
The horizontal line in the barplots indicates the nominal level. Error bars in the barplots represent
the interval within one standard deviation of the empirical coverage.
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Figure 15: Simulation results for Case 1 with s0 = 12, 16 and t-distributed random error. Barplots
for the empirical coverage and boxplots for the length and bias of the 95% confidence intervals.
The horizontal line in the barplots indicates the nominal level. Error bars in the barplots represent
the interval within one standard deviation of the empirical coverage.
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Figure 16: Simulation results for Case 1 with s0 = 3, 5 and Gamma-distributed random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals. The horizontal line in the barplots indicates the nominal level. Error bars in the barplots
represent the interval within one standard deviation of the empirical coverage.
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Figure 17: Simulation results for Case 1 with s0 = 10, 15 and Gamma-distributed random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals. The horizontal line in the barplots indicates the nominal level. Error bars in the barplots
represent the interval within one standard deviation of the empirical coverage.
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Figure 18: Simulation results for Case 2 with s0 = 4, 8 and Gamma-distributed random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals. The horizontal line in the barplots indicates the nominal level. Error bars in the barplots
represent the interval within one standard deviation of the empirical coverage.
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Figure 19: Simulation results for Case 2 with s0 = 12, 16 and Gamma-distributed random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals. The horizontal line in the barplots indicates the nominal level. Error bars in the barplots
represent the interval within one standard deviation of the empirical coverage.
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Figure 20: Simulation results for a sparse linear combination of β and t-distributed random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals for each contrast. The horizontal line in the barplots indicates the nominal level. Error
bars in the barplots represent the interval within one standard deviation of the empirical coverage.
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Figure 21: Simulation results for a sparse linear combination of β and Gamma-distributed random
error. Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals for each contrast. The horizontal line in the barplots indicates the nominal level. Error
bars in the barplots represent the interval within one standard deviation of the empirical coverage.
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Figure 22: Boxplots of the two different error variance estimators. Data i s generated by Case
1 with s0 = 3, 5, 10 and 15. “1st” denotes the estimator ‖Y − Xβ̂‖2/n and “2nd” denotes the
estimator ‖Y − Xβ̂‖2/(n − ‖β̂‖0). The number on the top of each panel denotes the number of
non-zero coefficients. The horizontal dashed line corresponds to the true error variance.

References

[1] Barber, R. F. and Candès, E. J. (2015). Controlling the false discovery rate via knockoffs. The

Annals of Statistics, 43(5), 2055-2085.

[2] Barber, R. F. and Candès, E. J. (2019). A knockoff filter for high-dimensional selective inference.

The Annals of Statistics, 47(5), 2504-2537.

[3] Belloni, A., Chernozhukov, V. and Hansen, C. (2014). Inference on treatment effects after

selection among high-dimensional controls. The Review of Economic Studies, 81(2), 608-650.

[4] Berk, R., Brown, L., Buja, A., Zhang, K. and Zhao, L. (2013). Valid post-selection inference.

The Annals of Statistics, 41(2), 802-837.
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