Supplementary material for “Testing mutual
independence in high dimension via distance

covariance”

By SHUN YAO, XIANYANG ZHANG, XIAOFENG SHAO *

1 Technical appendix

1.1 Hoeffding decomposition

For the kernel h defined in Lemma 2.1, define that h.(z1, ..., 2z.) = Eh(21,. .., 2e, Zet1, -+, Z4),
where Z; = (X;,Y;) =P (X,Y) for ¢ = 1,2,3,4. Let z = (z,y), 2 = («,¢), 2" = (2", y")
and 2" = (2, y"). Let (X',Y’), (X", Y") and (X", Y") be independent copies of (X,Y).
Direct calculation yields that

1
in(2) =3 { Bl = XI(Y = Y7y = Y1 =1y = V') = [y = Y]
FEIX = Xy = Y1+ Y -V = b= Y] - Y - v
1
—5{ Bl = XIV OV £ V0~ VY - V)
+EIX - X'|[V(y, Y)Y+ V(YY) - V(y,Y) - V(Y Y’/)]}
2

—5{Blle = X1 = 1X = XDV ¥) - VY + BIX - XV,

:%{EU(L X)WV (y,Y) + dCov*(X, Y)}
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Similarly, we obtain

1
oz, ) ZE{U@:, WV (o) + dCov?(X, Y)

+EU(z, X)(2V(y,Y) - V(¥.Y))

+EU (2, X)2V(y,Y) — V(y, Y))},

and
/ " 1 / / " " /
hs(z, 2", 2") :E{(QU(x,x) — U, 2") = U(z,2")V(y,y")
+ U (z,2") — Uz, 2") = U2, 2"))V (y,y")
+ U2, 2") = U(z,2") = U(z, 2"))V(y', y")
+EQU(x,X) - U2, X) = U(z", X))V(y,Y)
+EQU(z", X) - U(z,X) - U(", X))V(y,Y)
+EQU (2", X) - U(x,X) — U, X))V(y",Y)},
and

h4(z, Z/, Z//, Z///)

1

:12 {(QU(.Z‘,.CC/) _"_ 2U($H, x///) _ U(x, x//) _ U(l’,l‘/”) _ U(m/’x//) _ U(x,,x/”))(V(y, y/) + V(y”,y”’))
_"_ (2U(x7x//) _"_ 2U($/7$”/) _ U(.’E, x/) _ U(x,x’”) _ U(x//’xl) _ U(m//’x///))(v(y, y//) _"_ V(y/,y/,/))

_|_ (2U(£L',LU”/) + 2U(l’”,l‘/) _ U(z, x//) _ U(‘/L',:L'/) _ U(:E///’ x//) _ U(ﬂj,/,, x/))(v(y, y///) + V(y,, y//))}

1.1.1 Proof of Proposition 2.1

Proof. For the ease of notation, we drop the subscript n, that is, (X;,Y;) =P (X,Y), where
the distribution of (X,Y") is allowed to depend on n. Under the null of mutual independence
between X and Y, dCov*(X,Y) = 0. It can be easily seen that hy(z) = 0. And hy and hy

can be simplified as,

1
h2(27 Z/) = EU(x> .’L'/)V(y, y/),



and
ha(z, #, 2") —1—12{(2U(x, ¥) = U, 2") — Ul &)V (5,4
+ 2U(x,2") = U(z,2") = U(2",2"))V(y,y")
QU@ 2" — Ule, o) - U<x,x">>v<y',y">}.

We deduce that

var(ho(Z, 7)) = %EU(X, XNVV(Y,Y')? =12
and
var(hs(Z, 2", Z")) :%var{@U(X, X —UX, X" = UX, XNV, Y}
:i 2EU (X, X'V (YY) + EU(X, X"V (Y,Y")?
=o(nv?),
and also

var(ha(Z, 2, 2", 2")) :%EV(Y, YPRUX, X") + UX, X") + U(X', X")
+U(X, X" —2U(X,X") —2U(X", X"")]?
1
:E{EV(Y, Y)?U(X, X"+ EU(X, X')’EV(Y,Y")?
+EUX, X"V (Y, Y%

=o(n*v?).

The sample distance covariance can be decomposed as in (4) under the null. The readers
are referred to Serfling (1980) for more details.

Under the local alternative, we assume that
var(K(X,Y)) = o(n 'v?), var(K(X,Y")) = o(v?).
This condition implies that
var(h1(Z)) = o(n 'v?), var(ho(Z,2')) = v*(1 + o(1)).
Moreover, we have

var(hs(Z, 7', Z")) gc{ﬁ +EU(X, X"2V(Y,Y')? +EU(X, X"\ U(X', X"V (Y, Y’)Q}

g(]{y? +EU(X, X"V (Y, Y’)Q},



and
var(hy(Z,2', 2", 2")) gc’{ﬁ +EU(X, X"V (Y, Y )+ EU(X, X")*EV(Y,Y")? }

where C' and C” are some constants which are independent of n and p. Therefore, the same

decomposition can be derived under assumptions (1)-(3). O

1.2 Proofs of the main results
1.2.1 Proof of Lemma 2.1

Proof. Denote 1 € R™ as the vector of all ones, (n), = n!/(n — k)!, I} is the collections of
k-tuples of indices from {1,2,...,n} such that each index occurs only once. By Lemma 1 of

Park et al. (2015), it can be shown that
17A117B1 21TABI)

1
dCovi(X,)Y) = Y p— (tr(AB) + D=2 m=2

(ig kD) EID
= Z h‘ Zla Zk’7 Zl)
4 <j<k<l
where
(i7j7k7l)
1

h(Zm Zju Zky Zl) = E Z (AstBst + AstBuU - 2AstBsu)

’ (s,t,u,v)
1 (ivj7k7l) (l j k l

- 6 Z (AstBst + AstBuv - 12 Z AstBsu

s<t,u<v (s,t,u)

with Z; = (X}, Y;), and the last summation is over all permutations of the 4-tuples of indices

(1, j, k,1). Tt is straightforward to verify that

E| Y AyBy| =E[(AB)] = (n); - E|X — X'||Y - Y|,

| (i,9)€ly

E| >  AyBg| =EQ1"A11"B1 - 41"AB1 + 2tr(AB)] = (n), - E|X — X'[E[Y — Y7,

(z Jiq,r)EI}
E| Y A;Biy| =E1"AB1 - tr(AB)] = (n); - E|X — X'||Y =Y.
(z J.r)EIy
Therefore, dCov?(X,Y) is unbiased and it is a fourth-order U-statistic. O
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1.2.2 Proof of Theorem 3.1

Define the following quantities,

Vi =E[HW, W) H(W,W")?,
Vo = B[HW,W)HW,W"YHW" WYHW" W")],
Vs = E[H(W, W")4.

We first present the following three propositions.

Proposition 1.1. Define M, :== >77_, SYZVH(W, W), Then M, is a martingale relative
to the natural filtration with respect to {W,;}I_,.

Proof. Define the natural filtration F; = o(Wy, Wa, ..., W;). Notice that under the null

E[H(W;, W;)] = E[H(W;, W;)|Wi] = E[H(W;, W;)|W;] = 0.

rl

:MT+ZZE[ (Wi, W;)| F] +Z Z H (Wi, Wj)]

It follows that M, € F,. and E(M,) = 0. For any s > r,

r J—1 s 7j—1
E(MJ|F.) =Y H( Wi,Wj)HElz > HW, W)

J=2 =1 j=r+1 i=1

Jj=r+1 i=1 Jj=r+2i=r+1
¢ m m
S 3 ol DI ER RN
j=r+1 i=1 1<l<m<p
=M,.
Therefore, M, is a zero mean martingale sequence. O

Proposition 1.2. Define W; = SJ-1 H(W;,W;) and the natural filtration F; with respect
to W;. Then under the assumption that

Vi Vo

n_S4 — O, @ — 0, (1)

we have .
B,*Y EW|F) =P 1, (2)

j=2

where B2 = n(n — 1)8%/2.



Proof of Proposition 1.2. Notice that

ZQE[WQ ZElZ Z U(Ww, 7 ] )Um<Wi(m),VVj(m))

1,0/ =1 1<l<m<p

S U WO W, W)

1<l/<m/<p

Define L;(W;, W) = E[H(W;, W;)H (W, W;)|F;_1] for i,k < j, and note that

j—1 j—-1 j—1 j—1
E[Wflﬂ_l] :E[ZZH<W“W])H(W1€7 |‘F'J 1 ZZLJ quWk
=1 k=1 i=1 k=1

If s <k and ¢ < k' then

E[L;(W;, Wy) Ly (Wi, Wi )]

=EH(W,W'*H(W,W")? ifi=k=i=F,
=E[H(W,W"H(W,W"YHW" W HW" W")] ifi=0#k=K,ori=k#k=14,
=[EH (W, W')*? ifi=Fk+£d =k,

=0 otherwise,

and also

E[L;(Wi, Wi)E[Lj (Wi, Wi )]
=EH (Wi, W;)H (Wi, W) EH (Wi, Wi ) H (Wi, Wy
=[EH(W,W')*]? ifi =k, i =k,

=0 otherwise.

Therefore,

n n j—1 j'—1
Var< EW}|F;-1 > Z Z Z cov(L;(W;, W), Ly (Wi, Wis))
J

_ Z[(j 42— ) DVs— (- DS

+2 Y [-DViH20 -G -2V - (- 18

2<j<j’'<n



Under the assumption (1), we have

4 - )
m var < E[WJ |‘El]> — 0.
=2
Therefore (2) holds. O
Proposition 1.3. Define W; = Y21 H(W;,W;) and the natural filtration F; with respect
to W;. Under the assumption

Vi Vs
Y — 0, g — 0, (3)
we have .
> " B.’E (W} I(|Wj| > €B,)|Fj—1) =70, (4)

j=2

where B, = n(n —1)8%/2.

Proof of Proposition 1.3. Notice that

> BE (W] HIW,| > €B,)IFi1) < 3 B, (B,) E (IWi1Fin)

=2 j=2

for some s > 0. It suffices to show that for s = 2
> BL'E(WjIF;) =70,
=2

To this end, we show that

Some algebra yields that

SCEW =3 S BH(W W) H (Wi W) H (W, W, H(W,, W)

=2 i1,io,iz,ia=1
n j—1

:Z]Z:]E[ H(W,;, W;)* +3ZZE (Wi, Wy)*H (Wi, W;)7]
j=2 i=1 J=2 i#i

-1
:%vg +0(n*Vy).

Therefore, under (3), (5) holds. O

We present the following lemma which is useful in the proof of Theorem 3.1.



Lemma 1.1. Let a(z) = max{|E[|X — X'|| — 2E[|z — X|]|,E[|X — X'||}. Then we have
|U(z,2")| < max{a(z),a(z’)}.

Proof of Lemma 1.1. By the triangle inequality, we have |E[| X — 2'|] — |z — /|| < E[Jz—X'|]
for z,2" € R. Thus |U(z,2")| < max{|E[|X — X'|] — 2E[|z — X"|]|,E[|X — X'|]} = a(x).
Switching x and z’, we get |U(x,2")| < a(z’). The conclusion thus follows. O

Proof of Theorem 3.1. We show that Assumption Al implies both (1) and (3) under the
null, i.e., 2 — 0, ¥ st — 0 and 234 — 0. We write a < b if a is less or equal to b up to a
multiplicatlve constant. By Lemma 1.1 and the fact that ]E[ (X)] < E[|X —E[X]|], we have
Ly dCov* (W) 3 {E[UZ( D, W)y
S, dCoaX(WO)E — [0, dCor (WO

Z” 1{E[ (W)
= 0, dCo? (W02

< l:l{EHW — O
~ Do dCor (W)

By Assumption Al, Zle dCov* (W) = 0([ P dCov*(W"))2). Therefore, we have

ZdC’ov NdCov* (W)
l#m

- {27’: dC’on(W(Z))} — zp:dC’ov4(W(l))

=1

= {ZdCov } {1+ 0(1)}.

Again using Lemma 1.1 and the fact that E[a(X)?] < var(X), we have

V) =E[H(W, W2 H (W, W")?]
:Z Z E[UI(W(”,W/(l))2Um(W(m),W/(m))QUl/(W(l/),W//(l/))QUm/(W(m/)7W”(m/))Q]

l<ml'<m/’

4 2
< {ZE[Uz<W“>,W’<”>2]} i {ZEWW“)’ W 0)2g,(w ), W"(”ﬂ}
l

l

2
+{Z]E[U1(W(”,W(l)) U(W(l) w’ (l) } {ZE Ui( w® W(l)) ]}
!
2

< {Z d00v2<w<”>} + {Z{E[W“) - u<”u}2var<w<l>>} .
l

l

Together with Assumption A1, we can show that
2

4
vV 9 1

< E w® _ 2 0 RSN
S4N{ : dCov*( )} Y} {E {E[|[WO — O]} 2var(W )} v 0,



where we have used the Cauchy—SChwarz inequality to show { 3" {E[[W® — pO]]}2var(W®) }2 <
S AEWO — pO34 Y, var(W )2, Similarly, we have

V2 :E[H(W W’)H(W W”)H(WW, W/)H(Wm, W//)]
= Z E[U[(W(l)’ W/(l))Ul(W(l), W’l(l))Ul(W//l(l)7 Wl(l))Ul(Wm(l), Wu(l))

1<l<m<p

U, (W(m w' m))Um(W(m),W”(m))Um(WW(m),W/(m))Um(Wm(m),W"(m)ﬂ

2
S{ZEWW(”,W’“))Uz(W‘”,W NGO, W 0N (WO, W”m)]}
l

S {Z{EHW(” - M”IH”‘} ,

which implies that

Lastly, we have

Hence,

2 4
Vs 1 1

<) _- (D2 27 .
nQS4N{nS2ZZ:VM(W ) } —I—{Zl:d(}’ov (W )} n254—>0.

In view of Corollary 3.1 of Hall & Heyde (1980), the conclusion follows from Proposition 1.2
and 1.3. [

Theorem 3.3 and Theorem 4.1 can be proved using similar arguments in Proposition 1.2

and Proposition 1.3, we omit the details.



1.2.3 Proof of Theorem 3.2
Proof. Under the null of mutual independence, we have

ES® = Y E[dCovi(W")dCovl(W )]

1<l<m<p
= Z dCov* (W) dCov*(Wm) = §2.
1<li<m<p
Thus it suffice to show that
R 2 N
S? var(S?)

Notice that
var(8%) = ) Y cov(dCou(WD)dCour (W), dCovi (W) dCovy (W)
1<l<m<p 1<lV'<m/<p

= ZVar(dCOUi(W(l))dC’ova(W(m)))

I<m
+2 Z cov(dC’ovi(W(l))dCOUfL(W(m)),dCovi(W(l))dCovZ(W(m/)))

I<m<m/

= ZVar(dCova(W(l)))var(dCova(W(m)))
l<m
+ Z var(dCov?(WV))dCov* (W)
l#m
+ 2 Z var(dCov? (W®))dCov* (W ™) dCov? (W ™))

l<m<m/

=Ji+ o+ J;5  (say).

Since dCov2(WW®) is a fourth order U-statistics, by the Hoeffding decomposition, the domi-

() ()
1

var(hy (W®)) = Zva]r(IE[Ul(W“), w2 W)

nant term of its variance is
with

1 / 7
= Z{E[UZ(W(D’ W ORT WO, W' 0)2] — dCov* (W)},

Under Assumption Al and by Lemma 1.1, we can derive that

S EUW O, W OPgw O, w02 S EWD — w0} var (WD)

nS2 nS2 =0,

10



and

P dCov* (WD)
G2

as we have shown in the proof of Theorem 3.1. The higher order terms of the variance of

— 0,

dCov?(W®W) can be handled in a similar fashion. Hence we have

— 0.

S var(dCon2(W®)) o (zg;l{E[Ul(W(l), W' O)2y,wO, w02 — dcov4(w<l>)}>
S2 o nS2

Therefore, we obtain that

Ji P var(dCov2(WW0)) ?
? S |: SQ — 07
and l . z
J2 < (Zflvar(dCova(W()))) . ( 7, dCov (W())) 0
St = S? S? ’
and also
s 282577 var(dCov2(WW1))
54 < S — 0.
Thus S? is ratio consistent under the null and Assumption Al. O

1.2.4 Proof of Theorem 3.4

Proof. When W is standard Gaussian, we can directly calculate that dCov?(W®) = f(1) =
4(1+ Z — V/3). Therefore,

= > dCo*(W)dCo* (W) = pp=1) [F(1)]2.

Our test ¢ = 1 if D, > z,, where z, is 100(1 — a)% quantile of standard normal. Hence
we have

Zl<l<m<p \/ (Z) dCOUTQL(W(l) ) W(m))

[¢n a] = — — g S o

P( S" dCori WO, W)~ o < 2o (1) B - |@|2)

1<i<m<p

_P<| > dCov (WD W) — 0P > |z f

1<l<m<p

(1, [ A=Y jop

< Var[21<l<m<p dOOU2(W(l W(m))]
(20 )220 — Jop?)

?

11



where z,f(1) ngz 11) |©% is negative for large enough ¢ and the last inequality uses
the fact that B[}, ., dCov2 (WO W) = |©|? and Chebyshev’s inequality. Now let
Zm = (w® W™, by lemma 2.1 we have

1
Z dCOUi(W(l), W(m)) = TN Z hs(VVila ‘/Vz'w Wi37 Wi4>’
1<i<m<p 4) 1< <i9<i3<ia<n
where

W (Wi, Wiy, Wy We) = >z, 2z, 20 z0™).

14
1<i<m<p

Therefore >, ;_,.<, dCov? (WO W) is a fourth order U-statistic with kernel h® and its

variance is given by

> dCon (WY, WW)] = (Z) _1§ (i) <Z - i) var(hy) < Civar(hi)n

1<li<m<p

for some constant C' > 0. Here A} = >, ., he (220 for ¢ = 1,2,3,4 with

ho(Z\™ 20y = BRI 0, Zéﬂ), :Z{™) defined in Section 1.1.
Use the results from Lemma 1.2 or similar arguments from the proof, we can work out
the variance of the fourth order U-statistic. Specifically, for some constant ¢’, we have

4V&I‘(hi) _ Z E[h (Z(lm) Z(lm) Z(lm) Z(lm))h (Z(l m’) Z(l m') Z(l m’) Z(l m ))] . |@‘4

» Hiy s Hig s Hiy s Hig y Hig
1<l<m<p
1<l/'<m/<p
= Z [U(W(l), W’(l))U(W(m), V{ﬂ(ﬂ”ﬂ))(j({/{/(l/)7 W”(ll))U(W(ml), W”(m'))] — o
§l<m<p
1<l/'<m/<p
{ [/V(l)7 W’(l))U(W(Q), ]/[//(2))(](1/[/(3)7 W”(?’))U(W(‘l), W”(4))]

+ p3E[U(W(1)’ W’(l))U(W(l), V[///(l))U(V[/(Z)7 W/(2))U(W(3), W”(?’))]
+ p2IE[U(W(1)’ W/(l))U(W(l)’ W//(l))U(W(Z)’ W’(2))U(W(2), W,,(Q))]}

=0(le*) + 0(le*) + 0(|e]*).

Therefore, we have

Cn~'var(h3) < Cn~{O(|0]") + O(|6P) + O(|0]*)}
(2 f (12225 ~ 02 ) 22N et - 2z, f(1), /2D o2

Hence, the right hand side can be made less than 2 when p/n — A € (0,00), and also

12



|©| > ¢ for some large enough constant ¢ = ¢(a, 3, \). Similarly, we have

var(ng) <d{ 30 EUWO, WO W, W) (W, WOy e, )
1<l<m<p
1<U'<m’<p
S RO, WO W) O, O ) ey
1<i<m<p
1<V <m/<p
+ > EpwOwOuw e wrehu wr ), wOy wrtn, W”(m’))]}.

1<i<m<p
1<l/'<m/<p

In particular
Z E[UWO, wOuw ™ werhow® wEnhuwm) wm))

1<i<m<p
1<l <m/<p

{ W(1)7 W’(l))U(W@), W’(2>)U(W(3), W/(S))U(W@), W’<4>)]
+p3E[U(W(1), WORTW S WwEU(WE, w®)]
+p?E[UW D, wO2g(w®), W/(?))2]}

=0(|6[") + 0(pl©[*) + 0(p?),

and also

Z E[U(W(l), W/(l))U(W(m), I/V//(m))U(VV///(I’)7 W/(l’))U(W///(m’)’ W//(m’))]
1<l<m<p
1<lU'<m/<p
SC’{pﬁE[U(W 1) W/(l )U(W(2) WN(2))U(WNI(3), W/(B))U(W/// W/l 4))]
+ P’ EU(wW®, wWhu

( ) W///(l W//(l))U(W(Z) W//(2))U(W/// W/(s ]
+ p°E[U(W®, W
( )

( )
(W///(l) w! 1))U W(2 W// ))U(W///(S) W//(3))]
)

(
erz]E[U W(l W/ (1) U(W///(l w! 1))U(W(2 W// ))U(W/// 2) W//(z) ]}
=0(|el*) + o(le*) + O(|ef).

Therefore,

Cn’Qvar(hs) < OnHo(ie) + o(1eF) + O(16P) + O(IOF) + 0(*)}
(zaf( )/ 2= - 1) ) 212 410 — 220 f(1)/ 2= |02

The right hand side can also be made less than % when p/n — X\ € (0,00) and ¢ is large.

Using similar arguments, we can show that var(hj), var(hj) = O(var(h3)) and accordingly
we obtain that 1 — E[¢, o] < 1— 5 as p/n — X and the theorem is proved.
0
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Lemma 1.2. For multivariate Gaussian (Wy, Wo, W3, Wy) with pairwise correlation p, we

have

E[U (W1, W)U (Wa, W)U (Ws, W)U (Wi, Wy)] < C'|p[*, (6)
E[U (W1, W)U (Wa, W)U (Ws, W3\ U(Wy, W)] < C'|pl*,

E[U Wy, WU (W, W)U (Wa, W)U (W, W)] < C'|pl,

E[U (W1, W)U (W, W)U (Wa, W)U (Wa, W5)] < C'|pl?,

E[U (W1, W)U (We, W\ U(W3", Wy)UW{", W[)] < C'|pl*,

E[U (W, W)U (WY, W)U (Wa, W)U (W3, Wy)] < C'|pP,

E[U (W1, W)U (WY, W)U (We, W)U (WY, W3)] < C'|pf?,

[U( ) (

-
=
=
<

(Wa, W)U (W, W3)] < C'|pf?,
for some positive constant C' which is different from line to line.

Proof. We provide the details for (6). The other inequalities can be obtained in a similar

way. Using Lemma 1 in Szekeley et al. (2007), we can show that
dtq

Y
wt?

(W, W) = / (f(tr) — €% (Fi) — )

where f(t) = f(t) = e ¥/2. Therefore,

E[U (W1, W)U (W, Wa)U(Ws, W3)U (Wa, W)

:IE{ a (e t/2 _ oWy (p—13/2 _ pitaWay (o —13/2 _ LitsWa)(,—13/2 _ ,itaWa
| X I X )

x (712 — it W) (e=ta/2 _ itaWay(o=t3/2 _ oitaWiy(o=t/2 _ mw/)dtl dt dts dt4}

2 12 12 2

:/ e ‘]E(e—tf/z . eitlwl)(e—tg/z . eitzwz)(e—t§/2 . eit3W3)(e—t§/2 _ pitaWa ) 2 dty dis dt3 @
RAL

122 2 2
It is straightforward to verify that

E(eftf/Q . eitlwl)(e—tg/Q . eitQWQ)(67t§/2 . eithg)(efti/Q . eit4W4)

B G s —ptit —ptit —ptat: —ptat —ptst
—e 5 (6P12+€P13+6P14+6 piats 4 o—plats 4 o= pPlsle

_ e—Pt1t2—ﬁt1t3—Pt2t3 _ e—Ptltz—Pt1t4—Pt2t4 _ e—Pt1t3—Pt1t4—Pt3t4
_ e—Ptzts—ﬂt’zM—PtSM + e—Ptlt2—ﬂtlta—Pt1t4—Pt2t3—llt2t4—/1t3t4 _ 3)

143 +’a +3

=e" (3p t1tatsty + Remainder terms),

where the last step uses the Taylor expansion e” = 1 +x + 22/2+ Y 3” 2% /k!. Therefore we
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have

E[U (W1, W)U (W, Wo)U(Ws, W)U (Wa, Wy)

1+43 +t +t 2 dt, dto dts dt
= T A 4(3/) t1totsty + Remainder terms) —21—22—23—24
R4 ity 13 1
= / 94 ple ATBETETE) 4t dtydtsdty (7)
R4

dt, dty dts dty
212 22
L dty dty dts diy
2222

+ / 614 pPty totgtye” ATHETET) )(Remainder terms)—-

— _ (42 2 2
+ / 7 e HEHEHE) (Remainder terms)?
R4

(9)

We first consider term (8). Denote a; = tits, ay = tits, ag = tity, aq = tots, as = taty and

ag = t3ty. By the Vitali convergence theorem, we can show that

/ ¢~ (HEHET) (Remainder terms) dty dt dby dty
R4

t ty ts iy
— (—p)*

k!

/ ef(t%+t§+t§+tﬁ){<al)k+(a2>k+(a3)k+(a4)k+(a5>k+(a6)k
R4

?r

=3
((Il + as + a4)k — (CLl + as + CL5)k — (CLQ + as + aﬁ)k — (CL4 + as + aﬁ)k

dty dty dts dt
(o a2 + 0y + 04 + a5 + ag)F I EEEREY

Using the multinomial expansion, we have

a(k) 12{(al)k + (a2)* + (a3)* + (as)* + (a5)" + (a6)" — (a1 + a2 + as)* — (a1 + a3 + a5)"

—(a2+a3+a6)k—(a4+a5+a6)k+(a1+a2+a3+a4+a5—|—a6)k}

— Z k! pRutkaths gk katks gk +katke ks +ks+ko
Fey Voo g oy Vs o ! ! 2 ’ ! ’

where > denotes the summation over all (ki, ko, ks, k4, ks, kg) such that Z?Zl ki =k, k1 +
kotks > 1, ky+ka+ks > 1, ka+ky+ke > 1 and ks+ks+kg > 1. Since [, e P12k gt = 0 and
0< [ e P 12%dt < oo, we have I, > 0 for k > 3. We first consider the case —1/3 < p < 0.
By Holder’s inequality, we have

() el
> ] = o Lk E[U(WD, W) < oo,
k=3 k=3




which implies that

o0

— (=p)* lol* lol® 1/3 3
kz:; k! I = Z 1/332 Iy < Clpl”.

For 0 <p<1,>/2, (=p)

is convergent at p = 1, that is,

k=3 First notice that the above power series

00 1 k 0o _1 k

k=3 ’ k=3
By the Abel theorem, the power series is continuous as a function of p for p € [0,1] and
therefore bounded. Equivalently, we can use the Abel’s uniform convergence test to show
the power series is uniformly convergent for all p € [0,1]. Hence, Y ;- (7]5) < Clp)? for

some constant C' that is independent of p and accordingly term (8) < C/|p|®. Similarly , we

can show that

L dty dty dts diy
12222
pdty dty dts dt,
222

(42042042042 .
/ e~ (it +H) (Remainder terms)?
R4

=pb / e~ (HHETEHD) ()3 % Remainder terms)?
R4

_ / (B HEH) i dtl dty dts dty
" — hEmeE

<Clpl",
where Ji = ki kaet Wa(k’l)a(/@). Therefore
E[U(Wy, Wi)U(Wa, W)U (Ws, W3)U(Wy, Wy)] < Clpl*.

Using similarly arguments, we can show that

E[U(Wla W{)U(W% WQI)U(W37 Wél)U(W47 Wﬁil)]
:/ 7T—4e—(t§+tg+t§+ti)(e—/’tltz + e Plits + e Plits + e Ptats + e Ptats + e Plats
R4

— e Plita—ptats—ptats _ p—ptita—ptita—ptats _ —ptits—ptita—ptsts _ ,—ptats—plats—plsts

dtq dto dits dty
—ptita—ptits—ptitsa—ptats—ptats—ptst —ptit —ptst
+e plitz—ptitz—plita—pialz —plaly P34_3)(€ 012_1)(6 P34_ )t2 t2 t2 t2
dty dty dits dt
=/ 7r_4e_(t%+t§+t§+t‘21)(3p4t%t§t§ti + Remainder terms)—;—;—;’—;
R t1 t3 t3 1

<C'|p|*,
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E[U (W1, W)U (W, W)U (Wa, W3)U (W3, W3)]
:/ W—46—(t§+t§+t§+ti)(e—tltz +e—Pt1t3 +6—Pt1t4+6—0t2t3 +6—Pt2t4 +6—Pt3t4
R4

_ e—t1t2—9t1t3—Pt2t3 _ e—tth—Pt1t4—ﬂt2t4 _ e-ﬂtlts—l)t1t4—0t3t4 _ e—pt2t3—0t2t4—9t3t4

2 3 3 13

dtq dto dts dt
:/ a5+ D) (2p°t22t2t2 + Remainder terms )—21—22—23—24
R4 t1 t3 t3 13

+ e~ titz—ptits—ptita—ptats—ptata—ptsts _ 3)<e—pt1t3 _ 1)(e—pt2t4 _ )dtl dty dt3 diy
<C'|pP?,

’ " / 17
E[U(Wy, W)U (W1, WU (Wo, Wa)U (Wa, W3]
_ —4 (322 4t3) (—t1t2 —ptits —ptita —ptats —ptats —t3ty
= T %e (e +e +e +e +e +e
R4
_ e—t1t2—ﬂt1t3—Pt2t3 _ e—tltz—Pt1t4—Ptzt4 _ e—Pt1t3—Pt1t4—t3t4 _ e—Pt2t3—Pt2t4—t3t4

dty dto dts dt

=+ e titz—ptitz—plita—ptatz —plata—tsts _ 3)(6—/3751753 _ 1)(6—Pt2t4 _ ) t21 t22 t23 t24
dty dto dts dt

:/R4 7r_4e_(t§+t§+t§+ti)(2p2t%t§t2t4 + Remainder terms) t21 t22 t23 t24

<C'|p|?,

E[U (W1, W)U (W, Wy )U (W3, Wa)U (W4, W{)]

:/ w—4e—(t?+t§+t§+ti)(e—ptltz —1)(e"Phts — 1) (e Pl2ts — 1) (e Pl3ta — l)d—?df?d@d%%
R4 t1 t3 t3 t3

dty dto dts dt
:/]R4 gt (T +t3+t +ti)(p 231212 + Remainder terms) t21 t22 t23 t24

<C'|pl*,

E[U (W, W)U (W1, W)U (Wa, W)U (W3, W)

4 ($2442042042 _ _ _ _ dty dty dts dty
:/ 4e (t1+t2+t3+t4)(e tit2 —1)(6 ptits —1)(6 ptaty —1)(6 ptata _ )t2 t2 t2 t2
R4
dty dto dts dt
:/ W*4e*(t%+t§+t§+ti)(p?’t%t%tgti + Remainder terms)t—;t—;t—;t—;
R4 1ty 13 13

<C'|pl?,
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E[U Wy, W)U (W, W)U (Wa, Wy )U (W3", W3')]

:/ 7T—4e—(tf+t§+t§+tﬁ)(e—t1t2 — 1) (e Phits — 1)(emPlats — 1)(etot — )dtl dts dts %
R4 t2 t2 t2 t4
dty dto dts dt
:/ 7r_4e_(t%+t§+t§+ti)(pgt%tgtgti + Remainder terms)t—;t—;t—;’t—;
R4 1ty 13 1y

<C'|pl?,
and
E[U (W1, W1)2U(Wa, W3)U (W3, W3)]
:/ 7T7467(t§+t§+t§+ti)(671‘/1752 4 e Phls 4 emplita 4 omplats 4 o—plats | o—plsta
RAL

_ e—t1t2—0t1t3—0t2t3 _ e—tltz—pt1t4—ﬂt2t4 _ e_pt1t3_0t1t4_)‘)t3t4 _ e—ﬂt2t3—pt2t4—»0t3t4

dty dts dts dt,

2 3 13 t3

o dty dty dtz diy
23 22

+ e~ tita—ptitz—ptita—ptats—ptata—ptsts _ 3)2

:/ 77_46_“%“3”3“2)(2pt1t2t3t4 + Remainder terms)
]Rél

<C'|pf*.

1.2.5 Proof of Proposition 5.2

Proof. By (2.11) of Székely et al. (2007), we have

[t e

Therefore, direct calculation shows that

i) dt = k(W O, W@,

2

p p
/ H (W ) — TR )| di

i=1

p . p . .
/ H (W) _ 1) (e tteWs?) _ 1)gf + / E (et - 1y(e el — 1)d
i1 i=1

p .

p
:EH/CZ»(WI(Z), Wiy + [T B (Wi, Wiy — 2EHIC W wh)
i=1 =1 =1

=MdCov*(W;a).
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2 Additional Simulation Results

2.1 Testing for mutual independence

In this section, we provide additional simulation examples to compare the power from our
proposed test and LD;«. LDy is studied in Leung & Drton (2017), which is based on the
the sign covariance introduced by Bergsma & Dassios (2014). The sign covariance also
targets at non-linear dependence as distance covariance. We consider several non-Gaussian
data generating processes as follows. The power (rejection probabilities) reported below are

based on 5000 Monte Carlo simulations at the nominal level o = 0.05.

Example 2.1. The data W = (W4,...,W,) € RP, where W; = Z} for i = 1,....p and
Z = (Zy,...,Z,) are generated from multivariate t-distribution with degrees of freedom 5 and

the following three covariance matrices ¥ = (045(p)); j= for p=0.1.
e AR(1) structure: oy = 1 and o;; = pl'= for alli,j € {1,...,d};

e Band structure: o;; =1 fori=1,....d; 0;; = p if 0 < |i — j| < 3 and 0;; = 0 if

e Block structure: Define Xyoer = (07;) with oy = 1 and o5 = p if i # j for all
i,7 € {1,...,5}. The covariance matriz is given by the following Kronecker product
=15 @ Xpiock-

Table 1: Power of Example 2.1
AR(1) Band Block

n p dCov LDy dCov LDy« dCov LDy«
30 25 0.699 0.307 0.723 0.365 0.718 0.377
30 50 0.918 0.609 0.924 0.620 0.920 0.642
30 100 0.992 0.920 0.995 0.932 0.995 0.942
30 200 1.000 1.000 1.000 0.999 1.000 1.000
30 400 1.000 1.000 1.000 1.000 1.000 1.000
60 25 0.959 0.357 0971 0482 0.974 0.492
60 50 0.999 0.665 0.999 0.746 1.000 0.752
60 100 1.000 0.961 1.000 0.974 1.000 0.980
60 200 1.000 1.000 1.000 1.000 1.000 1.000
60 400 1.000 1.000 1.000 1.000 1.000 1.000
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Example 2.2. Similar to the example used in Leung & Drton (2017), consider the data
W = (Wy,..,W,) € RP, generated from multivariate power exponential distribution with
kurtosis parameter equals 20 and a compound symmetry covariance matriz > = (aij)ﬁ j—1 Jor
oy = 1 and o;; = 0.03.

Table 2: Power of Example 2.2
n =30 n = 60

p dCov LDy dCov LDy«
25 0.108 0.092 0.148 0.116
50 0.167 0.136 0.311 0.209

100 0.293 0.199 0.619 0.421
200 0.560 0.424 0.915 0.788
400 0.859 0.740 0.995 0.979
800 0.974 0.942 1.000 1.000

From both examples we observed that our proposed test shows higher power than LD«
when the dimension and sample size are low. Notice that as dimension decreases, the overall
dependence also decreases. Therefore, our test outperforms LD;+ under weak signal situations

and performs equally well as LD, for strong signal cases.

2.2 Testing for banded dependence structure

In this subsection, we conduct additional simulations to evaluate the performance of the
proposed test for the banded dependence structure. Adaptations of the CJ and HL,, tests to
testing the banded dependence structure are also carried out to compare with the proposed

test. The simulation setting is the same as in Section 6.1.

Example 2.3. Consider the following banded dependence structures

i) The data is generated from multivariate normal distribution with banded covariance
matriz 3 = (045); j=1, where oy = 1 fori=1,....d, 05 =03 if 0 < |i — j| <5 and 0;5 = 0
if li—j| = 5;

ii) The data is generated as W = Z3, where Z is generated from i);

iii) The data is generated as W = ZVY3 where Z is generated from i).

Table 3 shows the result from Example 2.3. The true bandwidth is 4 in this example, we
choose h = 5 and h = 10 in the tests. It can be seen from the table that dCov-based banded

dependence structure test has slight size inflation when n = 60, which subsides as sample
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size grows. In contrast, HL, test is a little bit conservative in some scenarios. CJ test is
more conservative in cases i & iii and shows strong size distortion when the distribution is
too far from Gaussian in case ii. It appears that there is no big difference between using
h =5 and h = 10 for all of the three tests. Likewise, we provide the histogram of the test
statistics from 5000 Monte Carlo simulation and also the kernel density estimate using the
Gaussian kernel with the comparison of standard normal density as the red dashed line in
Figure 2.1 for the three cases in this example where n = 100, p = 800 and A = 10. It is
shown that the normal approximation is quite close to the null distribution of the proposed
test statistic in all the three cases. The plots for h = 5 are almost identical to those for

h = 10 and therefore omitted.

Density
Density
Density

Figure 2.1: The histogram and kernel density estimate for the null distribution of the dCov-based
test statistic for Example 2.3. The red dashed line is the density of the standard normal.

Example 2.4. Consider the following cases

i) The data is generated from multivariate normal distribution with banded covariance
matriz X = (O’ij)ijzl, where 0;; =1 fori=1,...,d, 0;j = 0.1 if 0 < |[i — j| <20 and 0;; =0
if |1 — j| > 20;

ii) The data is generated as W = Z1/3, where Z is generated from 1).

iii) The data is generated the same way as Example 6.3 in Section 6.1.

Table 4 collects the results from Example 2.4. We choose h = 5 and h = 10 in all the
tests whereas the true bandwidths in cases i and ii are both 20; in case iii, there is no banded
dependence structure. We observe that the power for the proposed test is consistently higher
than other methods and the power increases as sample size and dimension increase, whereas
HL, test suffers from significant power reduction in all cases. Moreover, CJ test is the worst
among these three tests with power less than the nominal level in most of the scenarios.
This example demonstrates that our proposed banded dependence test has very good power

performance.
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Table 3: Size for the banded dependence tests from Example 2.3

(i) (ii) (i)
n P dCov CJ HL.- dCov CJ HL- dCov CJ HL.-
60 50 0.063 0.012 0041 0.065 0938 0.038 0062 0.027 0.046
60 100 0.067 0.008 0.048 0.070 1.000 0.044 0.064 0.020 0.044
60 200 0.061 0004 0044 0058 1000 0042 0.069 0.016 0.041
60 400 0.060 0.002 0.043 0.054 1.000 0.037 0.060 0.013 0.042
60 800 0.064 0.001 0034 0.066 1000 0.036 0.066 0.008 0.038
"=5 100 50 005 0021 0040 0059 0943 0040 0060 0029 0.042
100 100 0.056 0.018 0.044 0.053 1.000 0.048 0.058 0.029 0.044
100 200 0.055 0.015 0.042 0052 1.000 0.042 0.053 0.026 0.046
100 400 0.057 0.013 0.043 0.057 1.000 0.043 0.055 0.021 0.043
100 800 0.059 0.005 0.041 0.058 1.000 0.039 0.056 0.017 0.040
60 50 0.069 0.009 0034 0.063 0893 0.031 0060 0.022 0.036
60 100 0.067 0.007 0.044 0.066 0.999 0.039 0.062 0.017 0.040
60 200 0062 0004 0041 0062 1000 0.040 0.073 0.015 0.039
60 400 0.061 0002 0042 0055 1000 0.036 0061 0.013 0.041
h_qo 0 800 0064 0001 0033 0064 1000 0036 0065 0.008 0038
100 50 0.053 0.016 0.033 0060 0.901 0032 0.058 0024 0.034
100 100 0.058 0.016 0.040 0.058 1.000 0.043 0.056 0.025 0.040
100 200 0.057 0.014 0.042 0.052 1.000 0.040 0.054 0.025 0.043
100 400 0.057 0.012 0.042 0.060 1.000 0.042 0.054 0.021 0.042
100 800 0.061 0.005 0.040 0.059 1.000 0.038 0.057 0.017 0.040
Table 4: Power for the banded dependence tests from Example 2.4
(i) (ii) (i)
n P dCov CcJ HL, dCov CJ HL, dCov CcJ HL,
60 50 0983 0070 0.185 0938 0091 0192 1000 0.019 0.311
60 100 0998 0038 0.149 0980 0.062 0.151 1.000 0.014 0.359
60 200 0999 0.020 0.116 0.993 0.037 0.115 1.000 0.010 0.407
60 400 1.000 0.005 0072 0996 0020 0073 1.000 0.008 0.449
h_g 00 800 1000 0002 0064 0998 0012 0051 1.000 0003 0.511
100 50 1.000 0.249 0.345 0999 0.209 0357 1.000 0.023 0.310
100 100 1.000 0.170 0.302 1.000 0.163 0.285 1.000 0.023  0.368
100 200 1.000 0.101 0.215 1.000 0.107 0.210 1.000 0.023 0.423
100 400 1.000 0.050 0.150 1.000 0.067 0.154 1.000 0.015 0.490
100 800 1.000 0.026 0.114 1.000 0.038 0.106 1.000 0.010 0.537
60 50 0916 0050 0.130 0.804 0.062 0.129 1.000 0.015 0.305
60 100 0957 0028 0.114 0877 0045 0.116 1.000 0.013 0.356
60 200 0973 0016 0095 0902 0028 0094 1.000 0.010 0.406
60 400 0.980 0.004 0.063 0.915 0017 0.061 1.000 0.007 0.449
h_1o 00 800 0983 0002 0057 0921 0011 0044 1000 0003 0511
100 50 0.998 0.171 0.244 0.988 0.147 0.250 1.000 0.018 0.304
100 100 1.000 0.122 0.223 0.997 0.123 0.212 1.000 0.020 0.365
100 200 1.000 0.073 0.159 1.000 0.080 0.157 1.000 0.021 0.420
100 400 1.000 0.036 0.119 1.000 0.051 0.116 1.000 0.014  0.490
100 800 1.000 0.020 0.095 1.000 0.033 0.086 1.000 0.009 0.536
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2.3 Computational complexity

In the high-dimensional setting, computation cost is a worthy consideration. In this sec-
tion, we compare the computational complexity for different methods theoretically and also
provide a runtime analysis. The discussion only focuses on the £ methods mentioned in
the paper and also dHSIC, because the L., methods have the same order of computational
complexity as their Lo counterparts.

SC’s test uses the Pearson correlation, which is very straightforward to implement in O(n)
operations; LD, and LD, use the rank correlation coefficients Kendall’s 7 and Spearman’s p,
which are U-statistics of degrees 2 and 3, respectively. Naive implementation involves O(n?)
and O(n?) operations. However, Spearman’s p statistics can be easily calculated in O(nlogn)
operations based on its alternative definition. Christensen (2005) showed that Kendall’s 7
can also be computed in O(nlogn). Bergsma-Dassios’ sign covariance t* is a U-statistics of
degree 4. Direct computing has a O(n?) complexity, but Weihs et al. (2016) showed that
it can be computed in O(n*logn) operations; Heller & Heller (2016) further improved it
to O(n?). Distance covariance can also be computed in O(n?) operations; Huo & Székely
(2016) proposed a fast computing algorithm which only requires O(nlogn) operations. For
the corresponding Ls/L., statistics for testing pairwise independence, we need to evaluate
the underlying sample dependence measures (g) times. Since all the existing Lo statistics
are asymptotically pivotal, no further calibration is needed for these tests. However, in our
proposed test statistic, we do need to estimate the variance part. Hence the runtime for our
test is slightly longer than other methods with the same order of computational complexity.

On the other hand, dHSIC itself can be computed in O(p*n?) operations. Pfister et al.
(2016) proposed the dHSIC independence test based on permutation test, bootstrap and
Gamma approximation. If the first two approaches are used, the overall complexity becomes
O(Bp*n?), where B is the number of permutation/bootstrap. This is quite demanding as
compared with other methods discussed above. Table 5 shows the summary of computational
complexity for different methods. Figure 2.2 presents the runtime (at log scale) results, which

is consistent with the theory.
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Table 5: Computational Complexity for All Tests

Naive Algo Fast Algo
dCov O(p*n?) O(p?nlogn)
scC O(p*n)
LD, O(p*n?) O(p*nlogn)
LD, | O(p*n?) O(p*nlogn)
LDy | O(@?n') | O(p*n*logn)/ O(p*n?)
dHSIC |  O(p*n?)

Runtime analysis for different tests
n=50, p=10, X~N(0, I, ) , rep=1000

Runtime analysis for different tests
n=50, p=1000, X~N(0, I, ) , rep=1000
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Figure 2.2: Runtime analysis. dCov is implemented using the naive algorithm for simplicity,
dHSIC is implemented using permutation with B = 200, other tests are implemented using

the fast algorithms.
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