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Abstract

We discover a connection between the Benjamini-Hochberg (BH) procedure and the e-BH
procedure [Wang and Ramdas, 2022] with a suitably defined set of e-values. This insight ex-
tends to Storey’s procedure and generalized versions of the Benjamini-Hochberg procedure and
the model-free multiple testing procedure in Barber and Candès [2015] with a general form of
rejection rules. We further summarize these findings in a unified form. These connections open
up new possibilities for designing multiple testing procedures in various contexts by aggregating
e-values from different procedures or assembling e-values from different data subsets.
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1 Introduction

When working with high-dimensional data in modern scientific fields, the problem of multiple
testing often arises when we explore a vast number of hypotheses with the goal of detecting signals
while also controlling some error measures, such as the false discovery rate (FDR). The Benjamini-
Hochberg (BH) procedure [Benjamini and Hochberg, 1995] is perhaps the most widely used FDR-
controlling procedure that rejects a hypothesis whenever its p-value is less than or equal to an
adaptive rejection threshold determined by the whole set of p-values. Barber and Candès [2015]
proposed a model-free FDR-controlling (BC) procedure that estimates the number of false rejections
by leveraging the symmetry of p-values or test statistics under the null and compares each p-value
or test statistic with an adaptive threshold.

More recently, there is a growing literature on utilizing e-values for statistical inference under
different contexts, see, e.g., Grünwald et al. [2020], Shafer [2021], Vovk and Wang [2021], Xu et al.
[2021], Ignatiadis et al. [2023], Dunn et al. [2023], Xu and Ramdas [2023]. In particular, Wang
and Ramdas [2022] proposed a multiple testing procedure named e-BH procedure by applying the
BH procedure to e-values, which was shown to control the FDR even when the e-values exhibit
arbitrary dependence.

In this work, we establish a connection between the BH and e-BH procedures with a suitably
defined set of e-values, proving that they yield identical rejection sets. We next extend this con-
nection to Storey’s procedure and generalized versions of the BH and BC procedures, which can
have a more general form for the rejection rules. All these connections can be summarized in
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a unified form. Additionally, these connections provide an effective way of constructing multiple
testing procedures in different contexts. Specifically, we propose two new multiple testing proce-
dures by aggregating e-values from different procedures or the same procedure with different tuning
quantities, and assembling e-values from different data sets.

2 Preliminaries

2.1 False discovery rate (FDR)

Suppose we are interested in testing n hypotheses (H1, . . . ,Hn) simultaneously. Let θ = (θ1, . . . , θn) ∈
{0, 1}n indicate the underlying truth of each hypothesis, where θi = 0 if Hi is under the null and
θi = 1 otherwise. Denote by δ = (δ1, . . . , δn) ∈ {0, 1}n a decision rule for the n hypotheses, where
we reject the ith hypothesis if and only if δi = 1. The FDR for the decision rule δ is defined as the
expectation of the false discovery proportion (FDP), i.e.,

FDR(δ) = E[FDP(δ)], FDP(δ) =

∑n
i=1(1− θi)δi
1 ∨

∑n
i=1 δi

,

where a ∨ b = max(a, b). The goal of an FDR-controlling procedure is to ensure that the FDR is
bounded from above by a pre-specified number α ∈ (0, 1).

2.2 The Benjamini-Hochberg procedure

The BH procedure [Benjamini and Hochberg, 1995] is perhaps the most widely used FDR-controlling
method. To describe the procedure, suppose we observe a p-value pi for each Hi. Sort the p-values
in ascending order as p(1) ≤ · · · ≤ p(n) and let k̂ = max

{
i : p(i) ≤ (αi)/n

}
. The BH procedure

rejects all hypotheses H(i) with i ≤ k̂, where H(i) is the hypothesis associated with p(i). This
procedure is equivalent to rejecting all Hi with pi ≤ TBH, where TBH is defined as

TBH = sup

{
0 < t ≤ 1:

nt

1 ∨R(t)
≤ α

}
, (1)

with R(t) =
∑n

i=1 1{pi ≤ t} being the number of rejections given the threshold t, and 1{A}
denoting the indicator function associated with a set A.

Assumption 1. The null p-values are mutually independent, and are independent of the alternative
p-values.

We say that a p-value p is super-uniform under the null if P0(p ≤ t) ≤ t for each t ∈ [0, 1],
where P0 denotes the probability measure under the null hypothesis. It is well known that under
Assumption 1 and if the null p-values are super-uniform, the BH procedure at level α controls the
FDR at the level αn0/n ≤ α, where n0 is the number of hypotheses under the null [Ferreira and
Zwinderman, 2006].

2.3 Storey’s procedure

Storey’s procedure [Storey, 2002, Storey et al., 2004] improves the BH procedure by using the
p-values to estimate the null proportion π0 := n0/n. Specifically, we define

πλ0 := (1 + n−R(λ)) / ((1− λ)n) , (2)
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where λ ∈ [0, 1) is fixed. Storey’s procedure rejects all Hi with pi ≤ TST, where TST is defined as

TST = sup

{
0 < t ≤ λ : nπλ0 t

1 ∨R(t)
≤ α

}
. (3)

When πλ0 < 1, Storey’s procedure makes more rejections than the BH procedure. If Assumption 1
holds and the null p-values are uniformly distributed on [0, 1], Storey’s procedure has finite sample
FDR control [Storey et al., 2004].

2.4 The Barber and Candès procedure

In a seminal paper by Barber and Candès [2015], the authors proposed a model-free multiple
testing procedure (BC procedure) that exploits the symmetry of the null p-values or test statistics
to estimate the number of false rejections. More precisely, the BC procedure specifies a data-
dependent threshold, denoted by TBC, which is determined as follows:

TBC = sup

{
0 < t < 0.5:

1 +
∑n

i=1 1{pi ≥ 1− t}
1 ∨R(t)

≤ α
}
, (4)

and it rejects all Hi with pi ≤ TBC. The BC procedure has been shown to provide finite sample
FDR control under suitable assumptions [Barber and Candès, 2015].

2.5 E-values and e-BH procedure

A non-negative random variable e is called an e-value if E[e] ≤ 1 under the null hypothesis. Suppose
we observe n e-values e1, . . . , en corresponding to the hypotheses H1, . . . ,Hn. The α-level e-BH
procedure involves sorting the e-values in decreasing order as e(1) ≥ · · · ≥ e(n) and rejecting

the hypotheses associated with the k̂ largest e-values, where k̂ := max
{
1 ≤ i ≤ n : e(i) ≥ n/(iα)

}
.

Notice that P (1/ei ≤ t) ≤ t by Markov’s inequality, which indicates that 1/ei is super-uniform.
Thus, the e-BH procedure is simply the BH procedure applied to the p-values {1/ei}ni=1. An
advantage of the e-BH procedure is that it controls FDR at level α even under unknown arbitrary
dependence among the e-values.

Proposition 1 (Theorem 2 of Wang and Ramdas [2022]). Suppose the non-negative random vari-
ables {ei} satisfy ∑

i∈H0

E[ei] ≤ n, (5)

where H0 = {1 ≤ i ≤ n : θi = 0}. Then, the α-level e-BH procedure applied to {ei} controls the
FDR at the level α, regardless of the dependence structure among {ei}.

Proof. See Section B in the Appendices.

In the multiple testing context, the requirement that E[e] ≤ 1 in the definition of e-values can
be relaxed. More precisely, we will refer to {ei} as a set of e-values if they satisfy Condition (5)
throughout the rest of the paper.
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3 Connections between the BH/Storey/BC and e-BH procedures

3.1 Connection between the BH and e-BH procedures

We first establish the equivalence between the BH procedure and the corresponding e-BH procedure
with a suitably defined set of e-values. This equivalence appears to be a new finding that has not
been explicitly stated in the previous literature.

To see the connection between the BH and e-BH procedures, we define the e-value associated
with Hi to be

ei =
1

TBH
1{pi ≤ TBH}, (6)

where TBH is given in (1). The e-value defined in (6) coincides with the e-value defined in equation
(1) of Banerjee et al. [2023] when the decision rule therein is specified using the BH procedure.
Denote [n] = {1, 2, · · · , n} for any positive integer n. Under Assumption 1 and if the null p-
values are super-uniform, by Lemmas 3-4 in Storey et al. [2004], it is straightforward to show that∑

i∈H0
E[ei] = n0, which implies that the e-values defined by (6) satisfy (5). The detailed derivation

is provided in Section B.1. Thus, by Proposition 1, the corresponding e-BH procedure controls the
FDR at the desired level. Moreover, we claim that the e-BH procedure based on the e-values defined
in (6) is equivalent to the BH procedure in the sense that they produce the same set of rejections;
see Theorem 2 for a precise statement.

3.2 Connection between the Storey’s and e-BH procedures

Define the e-value associated with Hi to be

ei =
1

πλ0TST
1{pi ≤ TST}, (7)

where πλ0 is defined in (2) and TST is given in (3). We have the following results.

Theorem 1. Suppose Assumption 1 holds and the null p-values follow the uniform distribution on
[0, 1]. Then, the e-values defined in (7) satisfy (5). Additionally, let SST be the set of rejections
obtained through Storey’s procedure at the FDR level α, and let SeBH represent the set of rejections
obtained from the e-BH procedure at the same FDR level α, with the e-values defined in (7). Then
we have SST = SeBH.

Proof. See Section A in the Appendices.

3.3 Connection between the BC and e-BH procedures

As noted in the recent work by Ren and Barber [2024], the BC procedure is equivalent to the e-BH
procedure based on the following e-values:

ei =
n1{pi ≤ TBC}

1 +
∑n

j=1 1{pj ≥ 1− TBC}
,

where TBC is the threshold defined in (4).
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4 The Flexible BH and BC procedures

4.1 Flexible BH procedure

We generalize the BH procedure to allow the rejection rule to take the form of φi(pi) ≤ t, where
φi is a strictly increasing function and can differ for each i. This generalization enables the testing
procedure to utilize cross-sectional information among the p-values and external structural infor-
mation for each hypothesis, which often results in a higher multiple testing power. Let Fi = φ−1

i

represent the inverse function of φi, g be some strictly increasing function and g−1 be the inverse
function of g. Consider the rejection threshold given by

TFBH = sup

{
0 < t ≤ 1 :

ng(t)

1 ∨R(t)
≤ α

}
, (8)

where R(t) =
∑n

i=1 1{φi(pi) ≤ t}. The flexible BH (FBH) procedure rejects Hi whenever φi(pi) ≤
TFBH. Similar to the BH procedure, the FBH procedure can be equivalently implemented in the
following way. We sort qi = φi(pi) in an ascending order, i.e., q(1) ≤ · · · ≤ q(n) and find the largest

k, represented as k̂, for which q(k) ≤ g−1 (αk/n) . We reject H(i) for all i ≤ k̂. The following
proposition states that the FBH procedure ensures FDR control at certain level.

Proposition 2. Suppose Assumption 1 holds and the null p-values are super-uniform. The FBH
procedure controls the FDR at the level Cα, where

C =
∑
i∈H0

sup
t∈Cα

Fi(t)

ng(t)
, Cα = {0 < t ≤ 1 : g(t) ≤ α} . (9)

Additionally, if g(t) = n−1
∑n

i=1 Fi(t) and Fi(t) = cih(t), where ci is some positive constant and h
is a strictly increasing function of t, then the FBH procedure controls the FDR at level α.

Proof. See Section B in the Appendices.

Proposition 2 broadens and enhances Theorem 7.1 from Peña et al. [2011] in two ways. First, a
careful inspection reveals that Theorem 7.1 of Peña et al. [2011] is a specific instance of Proposition
2 with a particular choice of Fi(t) = ηi(t) and g(t) = 1

n

∑n
i=1 ηi(t), where (η1(t), . . . , ηn(t)) is the

multiple decision size vector defined in Peña et al. [2011]. Second, as a consequence of Proposition

2, the FBH procedure controls the FDR at level α when C =
∑

i∈H0
supt∈Cα

Fi(t)
ng(t) ≤ 1, which

is weaker than the condition n0 supi∈H0
supt∈Cα

Fi(t)
ng(t) ≤ 1 required in Theorem 7.1 of Peña et al.

[2011]. Please refer to Section C for a more comprehensive comparison between FBH and other
related works.

The following example illustrates that the FBH procedure aligns with the weighted BH proce-
dure for particular choices of g and φi.

Example 1. Let g(t) = t and φi(p) = p/ωi, where ωi denotes the weight for the ith hypothesis with
ωi > 0 and

∑n
i=1 ωi = n. The FBH procedure associated with this choice of φi and g corresponds

to the weighted BH procedure first introduced by Genovese et al. [2006]. In this case, the rejection
threshold can be expressed as

TFBH = sup

{
0 < t ≤ 1:

nt

1 ∨R(t)
≤ α

}
,

where R(t) =
∑n

i=1 1{pi/wi ≤ t}.
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4.2 Connection between the FBH and e-BH procedures

Analogous to the BH procedure, we show that the FBH procedure is equivalent to the e-BH
procedure applied to the following e-values:

ei =
1{φi(pi) ≤ TFBH}

g(TFBH)
, (10)

where TFBH is defined in (8). By the leave-one-out argument, we prove the following result.

Proposition 3. Under the assumptions in Proposition 2, the e-BH procedure with e-values defined
in (10) controls the FDR at the level Cα, where C is defined in (9).

Proof. See Section B in the Appendices.

Additionally, we can prove that the e-BH procedure and the FBH procedure deliver the same
set of rejections.

Theorem 2. Let SFBH be the set of rejections obtained through the FBH procedure at the FDR
level α, and let SeBH represent the set of rejections obtained from the e-BH procedure at the same
FDR level α, with the e-values defined in (10). Then we have SFBH = SeBH.

Proof. See Section A in the Appendices.

The e-value for the BH procedure is a special case of (10) with φi(t) = t and g(t) = t. Conse-
quently, the e-BH procedure based on (6) yields the same rejection set as the BH procedure.

4.3 Flexible BC procedure

In this section, we generalize the BC procedure with the rejection rule given by φi(pi) ≤ t. Similar
ideas have been pursued in the literature for structure-adaptive multiple testing [Lei and Fithian,
2018, Zhang and Chen, 2022]. We assume that the null p-value satisfies the condition:

P (pi ≤ a) ≤ P (pi ≥ 1− a) = P (1− pi ≤ a), for all 0 ≤ a ≤ 0.5. (11)

Condition (11) is weaker than the mirror conservativeness in Lei and Fithian [2018], and it can
be shown that super-uniformity implies (11). Indeed, P (1 − pi ≤ a) ≥ 1 − P (pi ≤ 1 − a) ≥
1− (1− a) = a ≥ P (pi ≤ a). Assume that φi is an increasing and continuous function, and define
Fi(x) = sup{0 ≤ p ≤ 1: φi(p) ≤ x}. We claim that P (φi(pi) ≤ b) = P (pi ≤ Fi(b)). To see this,
consider two cases. If φi(pi) ≤ b, by the definition of Fi(b), we have pi ≤ Fi(b). On the other
hand, if pi ≤ Fi(b), then φi(pi) ≤ φi(Fi(b)) = limp↑Fi(b) φi(p) ≤ b, where we use the fact that φi is
increasing to get the two inequalities, and the equality is due to the continuity of φi. Therefore, the
above claim together with equation (11) implies that P (φi(pi) ≤ b) = P (pi ≤ Fi(b)) ≤ P (1− pi ≤
Fi(b)) = P (φi(1− pi) ≤ b), for all φi(0) ≤ b ≤ φi(0.5). Hence, we have∑

i∈H0
1{φi(pi) ≤ t}

1 ∨
∑n

i=1 1{φi(pi) ≤ t}
≲

∑
i∈H0

1{φi(1− pi) ≤ t}
1 ∨

∑n
i=1 1{φi(pi) ≤ t}

≤
1 +

∑n
i=1 1{φi(1− pi) ≤ t}

1 ∨
∑n

i=1 1{φi(pi) ≤ t}
,
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where “≲” means “less or equal to asymptotically” and the last term can be viewed as a conservative
estimate of the FDP. Motivated by this observation, we define the threshold for the FBC procedure
as

TFBC = sup

{
0 < t ≤ Tup :

1 +
∑n

i=1 1{φi(1− pi) ≤ t}
1 ∨

∑n
i=1 1{φi(pi) ≤ t}

≤ α
}
, (12)

which is the largest cutoff such that the FDP estimate is bounded above by α, where Tup satisfies
Tup < mini φi(0.5). The FBC procedure rejects Hi whenever φi(pi) ≤ TFBC.

Proposition 4. Suppose that Assumption 1 holds and the null p-values satisfy Condition (11).
Assuming φi is a monotonic increasing and continuous function for all i, then the FBC procedure
ensures FDR control at level α.

Proof. See Section B in the Appendices.

Remark 1. Compared to the FBH procedure, the FBC approach affords us greater flexibility in
selecting φi, as it no longer requires φi to be strictly increasing, and its generalized inverse function
does not have to fulfill the condition in Proposition 2 to achieve FDR control.

Example 2. Suppose the p-value pi is generated independently from the two-group mixture model:
πif0 + (1 − πi)f1,i, where πi ∈ (0, 1) is the mixing proportion and f0 and f1,i denote the p-value
distributions under the null and alternative respectively. The local FDR is defined as Lfdri(p) =
πif0(p)/{πif0(p) + (1 − πi)f1,i(p)}, which is the posterior probability that the ith hypothesis is
under the null given the observed p-value being p. The monotone likelihood ratio assumption [Sun
and Cai, 2007] states that f1,i(p)/f0(p) is decreasing in p. Under this assumption, φi(p) = Lfdri(p)
is monotonically increasing in p and thus fulfills the requirement in Proposition 4. Additionally,
it has been shown in the literature that the rejection rule φi(pi) = Lfdri(pi) ≤ t is optimal in the
sense of maximizing the expected number of true positives among the decision rules that control
the marginal FDR at level α, see, e.g., Sun and Cai [2007], Lei and Fithian [2018], Cao et al. [2022].

4.4 Connection between the FBC and e-BH procedures

We show that the FBC procedure is equivalent to the e-BH procedure with the e-values:

ei =
n1{φi(pi) ≤ TFBC}

1 +
∑n

j=1 1{φj(1− pj) ≤ TFBC}
, (13)

where TFBC is defined in (12). By equation (B.1) in the proof of Proposition 4, we have
∑

i∈H0
E[ei] ≤

n, which implies that the corresponding e-BH procedure controls the FDR at the desired level. Fur-
thermore, the following theorem shows that the e-BH procedure with the e-values defined above is
equivalent to the FBC procedure.

Theorem 3. Let SFBC be the set of rejections obtained through the FBC procedure at the FDR
level α, and let SeBH represent the set of rejections obtained from the e-BH procedure at the same
FDR level α, with the e-values defined in (13). Then we have SFBC = SeBH.

Proof. See Section A in the Appendices.

7



method m(t) Ri(t) method m(t) Ri(t)

BH nt 1{pi ≤ t} BC 1 +
∑n

i=1 1{pi ≥ 1− t} 1{pi ≤ t}
FBH ng(t) 1{φi(pi) ≤ t} FBC 1 +

∑n
i=1 1{φi(1− pi) ≤ t} 1{φi(pi) ≤ t}

ST nπλ0 t 1{pi ≤ t}

Table 1: The selections of m(t) and Ri(t) for different methods.

4.5 A unified viewpoint

The connection between the aforementioned procedures and the e-BH procedure can be unified in
the following way. Suppose we reject the ith hypothesis if Ri(T ) = 1 with

T = sup

{
t ∈ D :

m(t)

1 ∨
∑n

j=1Rj(t)
≤ α

}
.

Here D denotes the domain of the threshold, m(t) is an estimate of the number of false discoveries,
and

∑n
j=1Rj(t) is the total number of rejections, with Rj(t) being the indicator function that

indicates whether the jth hypothesis should be rejected or not at the threshold t. The corresponding
e-BH procedure is defined based on the e-values ei = nRi(T )/m(T ) for 1 ≤ i ≤ n. The selections
of m(t) and Ri(t) for different methods are summarized in Table 1.

5 Aggregating and assembling e-values

We have shown that the BH and BC procedures and their generalized versions are all equivalent
to the e-BH procedure based on specific forms of e-values. This equivalence opens up new possi-
bilities for designing multiple testing procedures by aggregating/combining e-values from different
procedures (or the same procedure with different tuning quantities) or assembling e-values from
various subsets of the data. We present the following results for combining and assembling e-values,
which have not been explicitly stated in the existing literature. We refer readers to Section D in
Appendices for a more detailed illustration. The result in Proposition 5 is under the case where
we have L sets of e-values from L procedures, while the result in Proposition 6 is under the case
where we have L sets of e-values obtained from L different datasets.

Proposition 5. Suppose we have L sets of e-values {eli : i ∈ [n]}Ll=1 from L different procedures,

where {eli}Ll=1 are the L e-values associated with Hi and
∑

i∈H0
E[eli] ≤ n. Let ei =

∑L
l=1wl,ie

l
i be

the weighted e-value, where wl,i ≥ 0 is the aggregating weight. If
∑L

l=1maxiwl,i ≤ 1, the weighted
e-values satisfy Condition (5).

Proof. See Section D in the Appendices.

The condition
∑

i∈H0
E[eli] ≤ n for all l ensures that each procedure controls the FDR. Propo-

sition 5 suggests that the e-BH procedure applied to the weighted e-values still controls the FDR.
Moreover when E[eli] ≤ 1 for all i and l, the condition

∑L
l=1maxiwl,i ≤ 1 can be relaxed to∑L

l=1

∑n
i=1wl,i/n ≤ 1.

Proposition 6. Suppose we have L sets of e-values {eli : i ∈ Gl, |Gl| = nl} from L different
datasets, where ∪lGl = [n], Gl1 ∩ Gl2 = ∅ if l1 ̸= l2, e

l
i is associated with the hypothesis Hi and
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∑
i∈Gl∩H0

E[eli] ≤ nl. Let ei = wl,ie
l
i be the weighted e-value, where wl,i ≥ 0 is the assembling

weight. If
∑L

l=1 nlmaxi∈Gl
wl,i ≤ n, the weighted e-values satisfy Condition (5).

Proof. See Section D in the Appendices.

The condition
∑

i∈Gl∩H0
E[ei] ≤ nl ensures FDR control within each Gl. Proposition 6 suggests

that the e-BH procedure applied to the weighted e-values controls the overall FDR.

Appendices

A Proofs of the main results

We first state the following propositions whose proofs are deferred to Appendix B. These results
will be used frequently in the subsequent proofs.

Proposition A.1 (Lemma 6 of Barber et al. [2020]). Let TBC,i be the threshold for the BC method
when pi is replaced with min{pi, 1− pi}. For any i, j, if min(pi, pj) ≥ 1−max{TBC,i, TBC,j}, then
we have TBC,i = TBC,j.

Proposition A.2. Suppose the assumptions in Proposition 4 hold. Let Ti be the threshold for the
FBC procedure when pi is replaced with min{pi, 1−pi}. For any i, j, if max{φi(1−pi), φj(1−pj)} ≤
max{Ti, Tj}, then we have Ti = Tj.

A.1 Proof of Theorem 1

Proof. Let us first prove that the e-values defined by (7) satisfy (5). Under Assumption 1, by
Lemmas 3-4 in Storey et al. [2004],

∑
i∈H0

1{pi ≤ t}/t for 0 < t ≤ 1 is a martingale with time
running backwards with respect to the filtration Ft = σ(1{pi ≤ s} : t ≤ s ≤ 1, i = 1, 2, . . . , n), and
TST is a stopping time with respect to Ft, where Ft is the sigma field generated by 1{pi ≤ s} for
t ≤ s ≤ 1. By the optional stopping theorem, we have

∑
i∈H0

E[ei] = E
[∑

i∈H0
1{pi ≤ TST}
πλ0TST

]
= E

 n(1− λ)
1 + n−R(λ)

∑
i∈H0

1{pi ≤ λ}
λ

 .
Denote V (λ) =

∑
i∈H0

1{pi ≤ λ}. Since

1 + n−R(λ) = 1 + (n0 − V (λ)) + {(n− n0)− (R(λ)− V (λ))} ≥ 1 + n0 − V (λ),

we have ∑
i∈H0

E[ei] ≤
n(1− λ)

λ
E
[

V (λ)

1 + n0 − V (λ)

]
.
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Because the p-values follow the uniform distribution on [0, 1] under the null, we have V (λ) ∼
Bin(n0, λ), which implies

E
[

V (λ)

1 + n0 − V (λ)

]
=

n0∑
i=1

P
(
V (λ) = i

) i

1 + n0 − i

=

n0∑
i=1

(
n0
i

)
λi(1− λ)n0−i i

1 + n0 − i

=

n0∑
i=1

λi(1− λ)n0−i n0!× i
(1 + n0 − i)× (n0 − i)!× i!

=

n0∑
i=1

λi(1− λ)n0−i n0!

(1 + n0 − i)!(i− 1)!

=

n0−1∑
j=0

λj+1(1− λ)n0−j−1 n0!

(n0 − j)!j!

=
λ

1− λ

n0−1∑
j=0

λj(1− λ)n0−j n0!

(n0 − j)!j!

=
λ

1− λ
(
(λ+ 1− λ)n0 − λn0

)
=
λ(1− λn0)

1− λ
.

Hence, ∑
i∈H0

E[ei] ≤ n(1− λn0) ≤ n.

The last part is to prove that SST = SeBH. Let k̂ be the cardinality of SST. If i /∈ SST,
then pi > TST and thus ei = 0. This implies that the ith hypothesis is not rejected by the e-BH

procedure, and hence SeBH ⊂ SST. Conversely, if i ∈ SeBH, we have pi ≤ TST ≤ αk̂
nπλ

0
, leading to

ei =
1

πλ0TST
≥ n

αk̂
.

Define the ordered e-values e(1) ≥ e(2) ≥ · · · ≥ e(n), we have e(k̂) ≥ n/(αk̂), which indicates that

|SeBH| ≥ k̂. Because SeBH ⊂ SST, it is clear that SeBH = SST.

A.2 Proof of Theorem 2

Proof. Let k̂ be the cardinality of SFBH. If i /∈ SFBH, then φi(pi) > TFBH and thus ei = 0. This
implies that the ith hypothesis is not rejected by the e-BH procedure, and hence SeBH ⊂ SFBH.
Conversely, if i ∈ SFBH, we have φi(pi) ≤ TFBH ≤ g−1

(
αk̂/n

)
, leading to

ei =
1

g(TFBH)
≥ n

αk̂

10



as g is strictly increasing. Define e(i) = 1{q(i) ≤ TFBH}/g(TFBH) for 1 ≤ i ≤ n, where q(1) ≤
· · · ≤ q(n) are the order statistics of {qi = φi(pi)}ni=1. Let k̂ represent the maximum i for which
q(i) ≤ TFBH. We get

e(k̂) ≥
n

αk̂
, (A.1)

which indicates that |SeBH| ≥ k̂. Because SeBH ⊂ SFBH, it is clear that SeBH = SFBH.

A.3 Proof of Theorem 3

Proof. Let k̂ be the cardinality of SFBC. If i /∈ SFBC, then φi(pi) > TFBC and thus ei = 0. Hence
the ith hypothesis is not rejected by the e-BH procedure, which implies that SeBH ⊂ SFBC. For the
other direction, note that if i ∈ SFBC, then φi(pi) ≤ TFBC and 1+

∑n
j=1 1{φj(1−pj) ≤ TFBC} ≤ k̂α.

Hence, we have

ei ≥
n

k̂α
.

We sort the e-values in descending order as e(1) ≥ · · · ≥ e(n). It is clear that e(k̂) ≥ n/(k̂α). Thus,

|SeBH| ≥ k̂, which implies that SeBH = SFBC.

B Additional proofs

B.1 Proof of the Result in Section 3.1

Under Assumption 1 and if the null p-values are super-uniform, by Lemmas 3-4 in Storey et al.
[2004],

∑
i∈H0

1{pi ≤ t}/t for 0 < t ≤ 1 is a martingale with time running backwards with respect
to the filtration Ft = σ(1{pi ≤ s} : t ≤ s ≤ 1, i ∈ [n]), and TBH is a stopping time with respect
to Ft, where Ft is the sigma field generated by 1{pi ≤ s} for t ≤ s ≤ 1. By the optional stopping
theorem, we have∑

i∈H0

E[ei] = E
[∑

i∈H0
1{pi ≤ TBH}
TBH

]
= E

∑
i∈H0

1{pi ≤ 1}

 = n0.

B.2 Proof of Proposition 1

Proof. Note that

FDP =
n∑
i=1

1{ie(i) ≥ n/α,H(i) is under the null}
1 ∨ k̂

≤
n∑
i=1

1{ie(i) ≥ n/α,H(i) is under the null}
1 ∨ i

≤
n∑
i=1

1{H(i) is under the null}
αe(i)

n
=
α

n

∑
i∈H0

ei.

Under Condition (5), we have

FDR = E[FDP] ≤ α.

11



B.3 Proof of Proposition 2

Proof. Let Vi = 1{Hi is rejected}. We have

FDP(TFBH) =
∑
i∈H0

Vi
R(TFBH) ∨ 1

=
∑
i∈H0

Vi
ng(TFBH)

ng(TFBH)

R(TFBH) ∨ 1
≤ α

∑
i∈H0

Vi
ng(TFBH)

.

Therefore, we need to bound

E

∑
i∈H0

Vi
ng(TFBH)


from above. Observing that, for a given R, TFBH = TFBH(R) is a deterministic function of R, we
have:

E

∑
i∈H0

Vi
ng(TFBH)

 =
∑
i∈H0

n∑
k=1

E

[
Vi1{R = k}
ng

(
TFBH(k)

)] =
∑
i∈H0

n∑
k=1

E

[
Vi1{R(pi → 0) = k}

ng
(
TFBH(k)

) ]
,

where R(pi → 0) is the number of rejections obtained by replacing the p-value pi with 0. To clarify
the second equality, note that if Vi = 0, the equation is trivially true. When Vi = 1, setting pi to 0
does not change the number of rejections. By direct calculation,

E

∑
i∈H0

Vi
ng(TFBH)

 =
∑
i∈H0

n∑
k=1

1

ng
(
TFBH(k)

)E[1{φi(pi) ≤ TFBH(k)}]E[1{R(pi → 0) = k}]

≤
∑
i∈H0

n∑
k=1

Fi(TFBH(k))

ng
(
TFBH(k)

)E[1{R(pi → 0) = k}]

≤
∑
i∈H0

n∑
k=1

sup
t∈Cα

Fi(t)

ng(t)
E[1{R(pi → 0) = k}]

≤ C.

From (8), we know the domain of TFBH is Cα. Therefore, we only need to take the supremum
over Cα in the second inequality. Hence, the proposed method controls the FDR at level Cα.
Additionally, if g(t) = n−1

∑n
i=1 Fi(t) and Fi(t) = cih(t), we obtain

C ≤
n∑
i=1

sup
t∈Cα

Fi(t)∑n
j=1 Fj(t)

=

n∑
i=1

ci∑n
j=1 cj

= 1.

Hence, the proposed method controls the FDR at level α.

B.4 Proof of Proposition 3

Proof. Recall from the proof of Proposition 2 that TFBH = TFBH(RFBH) is a deterministic function
of RFBH. Additionally, for any i ∈ H0 and φi(pi) ≤ TFBH, replacing the p-value pi with 0 does not

12



change the number of rejections, i.e., RFBH(pi ← 0) = RFBH. Therefore, we can infer that

E

∑
i∈H0

ei

 =
∑
i∈H0

n∑
k=1

E[1{φi(pi) ≤ TFBH(k), RFBH = k}]
g
(
TFBH(k)

)
=

∑
i∈H0

n∑
k=1

E[1{φi(pi) ≤ TFBH(k), RFBH(pi ← 0) = k}]
g
(
TFBH(k)

)
≤

∑
i∈H0

n∑
k=1

Fi
(
TFBH(k)

)
E[1{RFBH(pi ← 0) = k}]
g
(
TFBH(k)

)
≤n

∑
i∈H0

n∑
k=1

sup
t∈Cα

Fi(t)

ng(t)
E[1{RFBH(pi → 0) = k}]

≤nC.

The final result can be obtained by going through the proof of Proposition 1.

B.5 Proof of Proposition 4

Proof. Write T = TFBC for the ease of notation. First note that

E

∑
i∈H0

1{φi(pi) ≤ T}
1 ∨

∑n
j=1 1{φj(pj) ≤ T}


=

∑
i∈H0

E

[
1{φi(pi) ≤ T}

1 ∨
∑n

j=1 1{φj(pj) ≤ T}
1 +

∑n
j=1 1{φj(1− pj) ≤ T}

1 +
∑n

j=1 1{φj(1− pj) ≤ T}

]

≤α
∑
i∈H0

E

[
1{φi(pi) ≤ T}

1 +
∑n

j=1 1{φj(1− pj) ≤ T}

]
.

Hence, we only need to show that

∑
i∈H0

E

[
1{φi(pi) ≤ T}

1 +
∑n

j=1 1{φj(1− pj) ≤ T}

]
≤ 1.

One approach to prove FDR control is through the construction of a super-martingale and
the use of the optional stopping theorem. Here, we employ an alternative argument based on the
leave-one-out technique. Let p̃i = min{pi, 1 − pi} and p−i = (p1, . . . , pi−1, p̃i, pi+1, . . . , pn). Define
Ti = T (p−i), where we view T as a function of the p-values. Notice that if φi(pi) ≤ T , then we
have

φi(pi) ≤ T ≤ Tup < φi(0.5),

which implies that pi < 0.5 since φi is increasing. Hence, if the ith hypothesis is rejected, then
pi = p̃i. Thus, 1{φi(pi) ≤ T} = 1{φi(pi) ≤ Ti}, which further implies that

E

[
1{φi(pi) ≤ T}

1 +
∑n

j=1 1{φj(1− pj) ≤ T}

]
= E

[
1{φi(pi) ≤ Ti}

1 +
∑

j ̸=i 1{φj(1− pj) ≤ Ti}

]
,

13



where we use the fact that if pi < 0.5, then φi(1 − pi) ≥ φi(0.5) > Tup ≥ Ti. Let Fi be the sigma
algebra generated by p−i. For i ∈ H0, we have

E

[
1{φi(pi) ≤ T}

1 +
∑n

j=1 1{φj(1− pj) ≤ T}

]
=E

[
E

[
1{φi(pi) ≤ Ti}

1 +
∑

j ̸=i 1{φj(1− pj) ≤ Ti}

∣∣∣∣∣Fi
]]

=E

[
1

1 +
∑

j ̸=i 1{φj(1− pj) ≤ Ti}
E [1{φi(pi) ≤ Ti}|Fi]

]

≤E

[
1

1 +
∑

j ̸=i 1{φj(1− pj) ≤ Ti}
E [1{φi(1− pi) ≤ Ti}|Fi]

]

=E

[
1{φi(1− pi) ≤ Ti}

1 +
∑

j ̸=i 1{φj(1− pj) ≤ Ti}

]
,

where we use the assumption that pi satisfies Condition (11) to get the inequality. By Proposition
A.2, we have

1{φi(1− pi) ≤ Ti}
1 +

∑
j ̸=i 1{φj(1− pj) ≤ Ti}

=
1{φi(1− pi) ≤ Ti}

1 +
∑

j ̸=i 1{φj(1− pj) ≤ Tj}
=

1{φi(1− pi) ≤ Ti}∑n
j=1 1{φj(1− pj) ≤ Tj}

.

If φi(1− pi) > Ti, both sides are equal to 0. If φi(1− pi) ≤ Ti, we claim that 1{φj(1− pj) ≤ Ti} =
1{φj(1− pj) ≤ Tj}. Indeed, if φj(1− pj) > Ti but φj(1− pj) ≤ Tj , then we have Ti < Tj . Hence,
φi(1− pi) ≤ Ti < Tj . By proposition A.2, we have Ti = Tj , which contradicts with the assumption
Ti < Tj . The other direction can be proved similarly.

Hence,

∑
i∈H0

E

[
1{φi(pi) ≤ T}

1 +
∑n

j=1 1{φj(1− pj) ≤ T}

]
≤ E

[∑
i∈H0

1{φi(1− pi) ≤ Ti}∑n
j=1 1{φj(1− pj) ≤ Tj}

]
≤ 1, (B.1)

which finishes the proof.

B.6 Proof of Proposition A.1

Proof. Proposition A.1 is a special case of Proposition A.2 by choosing φi as the identity function
for all 1 ≤ i ≤ n.

B.7 Proof of Proposition A.2

Proof. Write T = TFBC for the ease of notation. First, given a p-value vector p = (p1, · · · , pn),
recall that the threshold T is defined as

T = max

0 < t ≤ Tup :
1 +

∑n
l=1 1{φl(1− pl) ≤ t}∑n
l=1 1{φl(pl) ≤ t}︸ ︷︷ ︸

:=g(p,t)

≤ α

 ,

where Tup satisfies Tup < φl(0.5) for all l.
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Without loss of generality, let us assume Ti ≥ Tj . By the assumption that max{φi(1−pi), φj(1−
pj)} ≤ max{Ti, Tj}, we have φi(1−pi) ≤ Ti and φj(1−pj) ≤ Ti. Since φi is an increasing function,
we have φi(1− pi) ≤ Tup < φi(0.5), which implies 1− pi < 0.5. Thus φi(pi) ≥ φi(0.5) > Tup ≥ Ti.
The same discussion for pj leads to φj(pj) > Ti.

Denote p̃i = min{pi, 1 − pi} and p−i = (p1, · · · , pi−1, p̃i, pi+1, · · · , pn) for all i. Consider the
function

g(p−j , Ti) =
1 +

∑n
l=1 1{φl(1− p−j,l) ≤ Ti}∑n
l=1 1{φl(p−j,l) ≤ Ti}

,

where p−j,l is the lth entry of p−j . For the denominator, we have

n∑
l=1

1{φl(p−j,l) ≤ Ti}

=
n∑
l=1

1{φl(p−i,l) ≤ Ti}+ 1{φj(p−j,j) ≤ Ti}︸ ︷︷ ︸
=1

+1{φi(p−j,i) ≤ Ti}︸ ︷︷ ︸
=0

− 1{φj(p−i,j) ≤ Ti}︸ ︷︷ ︸
=0

−1{φi(p−i,i) ≤ Ti}︸ ︷︷ ︸
=1

=
n∑
l=1

1{φl(p−i,l) ≤ Ti}.

Similarly, for the numerator, we have

n∑
l=1

1{φl(1− p−j,l) ≤ Ti}

=

n∑
l=1

1{φl(1− p−i,l) ≤ Ti}+ 1{φj(1− p−j,j) ≤ Ti}︸ ︷︷ ︸
=0

+ 1{φi(1− p−j,i) ≤ Ti}︸ ︷︷ ︸
=1

−1{φj(1− p−i,j) ≤ Ti}︸ ︷︷ ︸
=1

−1{φi(1− p−i,i) ≤ Ti}︸ ︷︷ ︸
0

=
n∑
l=1

1{φl(1− p−i,l) ≤ Ti}.

Hence, g(p−j , Ti) = g(p−i, Ti) ≤ α. By the definition of Tj , we must have Ti ≤ Tj . Similarly, we
get Tj ≤ Ti and hence Ti = Tj .

C Additional discussions about the FBH procedure

Example C.1. Consider the scenario where g(t) = n−1
∑n

i=1 Fi(t) := F̄ (t) and Fi(t) = cih(t).
In this case, our approach reduces to the weighted BH procedure in Genovese et al. [2006]. To
see this, note that when Fi(t) = cih(t), we have φi(x) = F−1

i (x) = h−1(x/ci), F̄ (t) = c̄h(t),
and F̄−1(x) = h−1(x/c̄), where c̄ =

∑n
i=1 ci/n and F̄−1 is the inverse function of F̄ . Denote

qi = φi(pi) = h−1(pi/ci), and sort qi in an ascending order, i.e., q(1) ≤ · · · ≤ q(n), where (i) denotes
the index of the ith smallest value in the set {qi}ni=1. For any index (i), we have q(i) = h−1(p(i)/c(i)).
Since h is strictly increasing, so is h−1. Therefore, p(1)/c(1) ≤ · · · ≤ p(n)/c(n).
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For the FBH procedure, we reject H(i) for all i ≤ k̂, where

k̂ =max
i

{
i : q(i) ≤ F̄−1 (αi/n) = h−1

(
αi

nc̄

)}
=max

i

{
i : h−1(p(i)/c(i)) ≤ h−1

(
αi

nc̄

)}
=max

i

{
i :

p(i)

c(i)/c̄
≤ αi

n

}
,

which coincides with the weighted BH procedure with the weights being ci/c̄.

Remark C.1. When g(t) = n−1
∑n

i=1 Fi(t) and Fi(t) = cih(t), the FBH method satisfies the two
sufficient conditions for controlling FDR, as proposed by Blanchard and Roquain [2008]. Therefore,
the FDR control, in this case, can also be proven using Proposition 2.7 in Blanchard and Roquain
[2008].

Remark C.2. The p-testing procedure in Section 6.5 of Wang and Ramdas [2022] is a specific case
of our FBH procedure. In the p-testing procedure, a strictly decreasing and continuous function
ψ : [0, 1]→ [0,∞] is used to decide the set of rejections. Specifically, the p-testing procedure rejects
k∗ψ hypotheses with the smallest p-values, where k∗ψ = max

{
i : ψ(p(i)) ≥ n/i

}
. Wang and Ramdas

[2022] obtained an upper bound for the FDR of the p-testing procedure. In the FBH procedure, the
rejection rule depends on the strictly increasing functions {φi} that can differ for each Hi, which
allows us to incorporate external structural information for each hypothesis. If we choose g as the
identity function and φi(x) = α/ψ(x) for all i, then the FBH procedure reduces to the p-testing
procedure in Wang and Ramdas [2022].

Remark C.3. The weighted BH procedure proposed in Remark 1 of Sarkar [2023] is a specific
case of our FBH procedure. In Sarkar [2023], the author proposed a transformation of the p-values
using the formula q̃i := F0

(
w−1
i F−1

0 (pi)
)
, where wi represents the weight for the ith hypothesis. He

then applied the BH procedure to {q̃i}, i.e., compared them with the set of thresholds {iα/n : i =
1, 2, · · · , n}. In contrast, in the FBH procedure, F0

(
w−1
i F−1

0

)
can be viewed as a special case of

φi, where we compare φi(pi) with the threshold g−1(iα/n) : i = 1, 2, · · · , n. If we choose g as the
identity function, the FBH procedure simplifies to the weighted BH procedure proposed in Sarkar
[2023].

D Additional discussions about aggregating and assembling e-
values

We have shown that the BH and BC procedures and their generalized versions are all equivalent to
the e-BH procedure based on specific forms of e-values. This equivalence opens up new possibilities
for designing multiple testing procedures in different contexts by combining e-values from different
procedures (or the same procedure with different tuning quantities) or assembling e-values from
various subsets of the data. See Figure 1 below for an illustration of aggregating and assembling
e-values.
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Figure 1: An illustration of aggregating e-values from different procedures and assembling e-values
from different datasets.

D.1 Aggregating e-values from different procedures

Suppose we have L sets of e-values {eli : i ∈ [n]}Ll=1 (possibly) from L different multiple testing pro-
cedures, where {eli}Ll=1 are the L e-values associated with Hi and

∑
i∈H0

E[eli] ≤ n. In other words,

for each hypothesis Hi, we have L e-values {eli}Ll=1. In this scenario, our goal is to aggregate the L
sets of e-values {eli : i ∈ [n]}Ll=1 into a single e-value vector [e1, · · · , en], satisfying Condition (5). In

Proposition 5, we propose to define the weighted e-value through ei =
∑L

l=1wl,ie
l
i, where wl,i ≥ 0

is the aggregating weight. The condition
∑

i∈H0
E[eli] ≤ n for all l ensures that each procedure

controls the FDR. Proposition 5 suggests that the e-BH procedure applied to the weighted e-values
still controls the FDR. Below is the proof of Proposition 5.

Proof of Proposition 5.

∑
i∈H0

E[ei] =
∑
i∈H0

L∑
l=1

wl,iE[eli]

≤
∑
i∈H0

L∑
l=1

max
i
wl,iE[eli]

=
L∑
l=1

max
i
wl,i

∑
i∈H0

E[eli]

≤
L∑
l=1

max
i
wl,in

≤ n.

When n = 1, this problem is the same as the e-value merging problem considered in Vovk and
Wang [2021]. In their Proposition 3.1, the authors proved that the arithmetic mean dominates any
symmetric aggregation function. For a detailed explanation of “domination” and how to prove this
result, please refer to Vovk and Wang [2021]. Let f : [0, 1]n → [0, 1] be an aggregation function. We
say that f is a symmetric aggregation function if it is invariant with respect to any permutation of
its arguments, i.e., f(e1, · · · , en) = f(ei1 , · · · , ein), where [i1, · · · , in] is a permutation of [1, · · · , n].
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Notice that our proposed method is a weighted mean, where the weight can be different for each
eli. Hence, our aggregation function is not symmetric.

Banerjee et al. [2023] considered a similar aggregation problem. In their scenario, only a portion
of {eli}Ll=1 is observable for each hypothesis Hi. Their method relies on arithmetic mean and does
not cover the case of weighted averages.

D.2 Assembling e-values from different datasets

Suppose we have L sets of e-values {eli : i ∈ Gl, |Gl| = nl} from L different datasets, where ∪lGl = [n],
Gl1 ∩ Gl2 = ∅ if l1 ̸= l2, ei is associated with the hypothesis Hi and

∑
i∈Gl∩H0

E[eli] ≤ nl. In this

scenario, our goal is to assemble L sets of e-values {eli : i ∈ Gl, |Gl| = nl} into a single e-value vector
[e1, · · · , en], satisfying Condition (5). To our knowledge, this problem seems less explored in the
existing e-value literature.

In Proposition 6, we propose to define the weighted e-value through ei = wl,ie
l
i, where wl,i ≥ 0

is the assembling weight. The most direct method is to set all weights equal to 1. However, in
practice, we may have some extra information, which allows different weights to make our approach
more flexible. The condition

∑
i∈Gl∩H0

E[ei] ≤ nl for all l ensures that the FDR is controlled within
each group Gl. Proposition 6 suggests that the e-BH procedure applied to the weighted e-values
controls the overall FDR. Following is the proof of Proposition 6.

Proof of Proposition 6.

∑
i∈H0

E[ei] =
L∑
l=1

∑
i∈Gl∩H0

wl,iE[eli]

≤
L∑
l=1

∑
i∈Gl∩H0

max
i∈Gl

wl,iE[eli]

=
L∑
l=1

max
i∈Gl

wl,i
∑

i∈Gl∩H0

E[eli]

≤
L∑
l=1

max
i∈Gl

wl,inl

≤ n.
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