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OPTIMAL FALSE DISCOVERY RATE CONTROL FOR
LARGE SCALE MULTIPLE TESTING WITH AUXILIARY

INFORMATION

By Hongyuan Cao† Jun Chen‡ and Xianyang Zhang§

Florida State University†, Mayo Clinic‡ and Texas A&M University§

Large-scale multiple testing is a fundamental problem in high
dimensional statistical inference. It is increasingly common that var-
ious types of auxiliary information, reflecting the structural relation-
ship among the hypotheses, are available. Exploiting such auxiliary
information can boost statistical power. To this end, we propose a
framework based on a two-group mixture model with varying proba-
bilities of being null for different hypotheses a priori, where a shape-
constrained relationship is imposed between the auxiliary informa-
tion and the prior probabilities of being null. An optimal rejection
rule is designed to maximize the expected number of true positives
when average false discovery rate is controlled. Focusing on the or-
dered structure, we develop a robust EM algorithm to estimate the
prior probabilities of being null and the distribution of p-values under
the alternative hypothesis simultaneously. We show that the proposed
method has better power than state-of-the-art competitors while con-
trolling the false discovery rate, both empirically and theoretically.
Extensive simulations demonstrate the advantage of the proposed
method. Datasets from genome-wide association studies are used to
illustrate the new methodology.

1. Introduction. Large scale multiple testing refers to simultaneously
testing of many hypotheses. Given a pre-specified significance level, family-
wise error rate (FWER) controls the probability of making one or more
false rejections, which can be unduly conservative in many applications. The
false discovery rate (FDR) controls the expected value of the false discovery
proportion, which is defined as the ratio of the number of false rejections
divided by the number of total rejections. Benjamini and Hochberg (BH)
[5] proposed a FDR control procedure that sets adaptive thresholds for the
p-values. It turns out that the actual FDR level of the BH procedure is
the multiplication of the proportion of null hypotheses and the pre-specified
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significance level. Therefore, the BH procedure can be overly conservative
when the proportion of null hypotheses is far from one. To address this
issue, [43] proposed a two-stage procedure (ST), which first estimates the
proportion of null hypotheses and uses the estimated proportion to adjust
the threshold in the BH procedure at the second stage. From an empirical
Bayes perspective, [17] proposed the notion of local FDR (Lfdr) based on the
two-group mixture model. [45] developed a step-up procedure based on Lfdr
and demonstrated its optimality from the compound decision viewpoint.

The aforementioned methods are based on the premise that the hypothe-
ses are exchangeable. However, in many scientific applications, particularly
in genomics, auxiliary information regarding the pattern of signals is avail-
able. For instance, in differential expression analysis of RNA-seq data, which
tests for difference in the mean expression of the genes between conditions,
the sum of read counts per gene across all samples could be the auxiliary
data since it is informative of the statistical power [35]. In differential abun-
dance analysis of microbiome sequencing data, which tests for difference in
the mean abundance of the detected bacterial species between conditions,
the genetic divergence among species is important auxiliary information,
since closely-related species usually have similar physical characteristics and
tend to covary with the condition of interest [50]. In genome-wide asso-
ciation studies, the major objective is to test for association between the
genetic variants and a phenotype of interest. The minor allele frequency and
the pathogenicity score of the genetic variants, which are informative of the
statistical power and the prior null probability, respectively, are potential
auxiliary data, which could be leveraged to improve the statistical power as
well as enhance interpretability of the results.

Accommodating auxiliary information in multiple testing has recently
been a very active research area. Many methods have been developed adapt-
ing to different types of structure among the hypotheses. The basic idea is
to relax the p-value thresholds for hypotheses that are more likely to be
alternative and tighten the thresholds for the other hypotheses so that the
overall FDR level can be controlled. For example, [19] proposed to weight
the p-values with different weights, and then apply the BH procedure to the
weighted p-values. [23] developed a group BH procedure by estimating the
proportion of null hypotheses for each group separately. [34] generalized this
idea by using the censored p-values (i.e., the p-values that are greater than
a pre-specified threshold) to adaptively estimate the weights that can be de-
signed to reflect any structure believed to be present. [25; 26] proposed the
independent hypothesis weighting (IHW) for multiple testing with covari-
ate information. The idea is to use cross-weighting to achieve finite-sample
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FDR control. Note that the binning in IHW is only to operationalize the
procedure and it can be replaced by the proposed EM algorithm below.

The above procedures can be viewed to some extent as different variants of
the weighted-BH procedure. Another closely related method was proposed in
[30], which iteratively estimates the p-value threshold using partially masked
p-values. It can be viewed as a type of Knockoff procedure [2] that uses the
symmetry of the null distribution to estimate the false discovery proportion.
A similar idea was explored in [51] which proposed a covariate adaptive
multiple testing procedure.

Along a separate line, Lfdr-based approaches have been developed to ac-
commodate various forms of auxiliary information. For example, [9] con-
sidered multiple testing of grouped hypotheses. The authors proposed an
optimal data-driven procedure that uniformly improves the pooled and sep-
arate analyses. [44] developed an Lfdr-based method to incorporate spatial
information. [40; 47] proposed EM-type algorithms to estimate the Lfdr by
taking into account covariate and spatial information, respectively.

Other related works include [18], which considers the two-group mixture
models with side-information. [13] develops a method for estimating the
constrained optimal weights for Bonferroni multiple testing. [7] proposes an
FDR-controlling procedure based on the covariate-dependent null probabil-
ities.

In this paper, we develop a new method along the line of research on Lfdr-
based approaches by adaptively estimating the prior probabilities of being
null in Lfdr that reflect auxiliary information in multiple testing. The pro-
posed Lfdr-based procedure is built on the optimal rejection rule as shown in
Section 2.1 and thus is expected to be more powerful than the weighted-BH
procedure when the underlying two-group mixture model is correctly spec-
ified. Compared to existing work on Lfdr-based methods, our contributions
are three-fold. (i) We outline a general framework for incorporating vari-
ous forms of auxiliary information. This is achieved by allowing the prior
probabilities of being null to vary across different hypotheses. We propose
a data-adaptive step-up procedure and show that it provides asymptotic
FDR control when relevant consistent estimates are available. (ii) Focusing
on the ordered structure, where auxiliary information generates a ranked
list of hypotheses, we develop a new EM-type algorithm [12] to estimate
the prior probabilities of being null and the distribution of p-values under
the alternative hypothesis simultaneously. Under monotone constraint on
the density function of p-values under the alternative hypothesis, we utilize
the Pool-Adjacent-Violators Algorithm (PAVA) to estimate both the prior
probabilities of being null and the density function of p-values under the al-
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ternative hypothesis (see [20] for early work on this kind of problems). Due to
the efficiency of PAVA, our method is scalable to large datasets arising in ge-
nomic studies. (iii) We prove asymptotic FDR control for our procedure and
obtain some consistency results for the estimates of the prior probabilities
of being null and the alternative density, which is of independent theoretical
interest. Finally, to allow users to conveniently implement our method and
reproduce the numerical results reported in Sections 5-6, we make our code
publicly available at https://github.com/jchen1981/OrderShapeEM.

The problem we considered is related but different from the one in [21; 33],
where the authors seek the largest cutoff k so that one rejects the first k
hypotheses while accepts the remaining ones. So their method always rejects
an initial block of hypotheses. In contrast, our procedure allows researchers
to reject the kth hypothesis but accept the k− 1th hypothesis in the ranked
list. In other words, we do not follow the order restriction strictly. Such
flexibility could result in a substantial power increase when the order infor-
mation is not very strong or even weak, as observed in our numerical studies.
Also see the discussions on monotonicity in Section 1.1 of [40].

To account for the potential mistakes in the ranked list or to improve
power by incorporating external covariates, alternative methods have been
proposed in the literature. For example, [36] extends the fixed sequence
method to allow more than one acceptance before stopping. [32] modifies
AdaPT in [30] by giving analysts the power to enforce the ordered constraint
on the final rejection set. Though aiming for addressing a similar issue, our
method is motivated from the empirical Bayes perspective, and it is built
on the two-group mixture model that allows the prior probabilities of being
null to vary across different hypotheses. The implementation and theoretical
analysis of our method are also quite different from those in [32; 36].

Finally, it is also worth highlighting the difference with respect to the
recent work [11] which is indeed closely related to ours. First of all, our
Theorem 3.3 concerns about the two-group mixture models with decreas-
ing alternative density, while Theorem 3.1 in [11] focuses on a mixture of
Gaussians. We generalize the arguments in [48] by considering a transformed
class of functions to relax the boundedness assumption on the class of de-
creasing densities. A careful inspection of the proof of Theorem 3.3 reveals
that the techniques we develop are quite different from those in [11]. Sec-
ond, we provide a more detailed empirical and theoretical analysis of the
FDR-controlling procedure. In particular, we prove that the step-up pro-
cedure based on our Lfdr estimates asymptotically controls the FDR and
provide the corresponding power analysis. We also conduct extensive sim-
ulation studies to evaluate the finite sample performance of the proposed
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Lfdr-based procedure.
The rest of the paper proceeds as follows. Section 2 proposes a general

multiple testing procedure that incorporates auxiliary information to im-
prove statistical power, and establishes its asymptotic FDR control prop-
erty. In Section 3, we introduce a new EM-type algorithm to estimate the
unknowns and study the theoretical properties of the estimators. We discuss
two extensions in Section 4. Section 5 and Section 6 are devoted respectively
to simulation studies and data analysis. We conclude the paper in Section
7. All the proofs of the main theorems and technical lemmas are collected
in the Appendix.

2. Covariate-adjusted multiple testing. In this section, we describe
a covariate-adjusted multiple testing procedure based on Lfdr.

2.1. Optimal rejection rule. Consider simultaneous testing ofm hypothe-
ses Hi for i = 1, . . . ,m based on m p-values x1, . . . , xm, where xi is the
p-value corresponding to the ith hypothesis Hi. Let θi, i = 1, . . . ,m indicate
the underlying truth of the ith hypothesis. In other words, θi = 1 if Hi is
non-null/alternative and θi = 0 if Hi is null. We allow the probability that
θi = 0 to vary across i. In this way, auxiliary information can be incorporated
through

(1) P (θi = 0) = π0i, i = 1, . . . ,m.

Consider the two-group model for the p-values (see e.g., [15] and Chapter 2
of [16]):

(2) xi | θi ∼ (1− θi)f0 + θif1, i = 1, . . . ,m,

where f0 is the density function of the p-values under the null hypothesis and
f1 is the density function of the p-values under the alternative hypothesis.
The marginal probability density function of xi is equal to

f i(x) = π0if0(x) + (1− π0i)f1(x).(3)

We briefly discuss the identifiability of the above model. Suppose f0 is
known and bounded away from zero and infinity. Consider the following
class of functions:

Fm =
{
f̃ = (f̃1, . . . , f̃m) with f̃ i = π̃if0 + (1− π̃i)f̃1 : min

x∈[0,1]
f̃1(x) = 0,

0 ≤ π̃i ≤ 1,min
i
π̃i < 1}.
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Suppose f̃ , f̆ ∈ Fm, where the ith components of f̃ and f̆ are given by
f̃ i = π̃if0 + (1− π̃i)f̃1 and f̆ i = π̆if0 + (1− π̆i)f̆1 respectively. We show that
if f̃ i(x) = f̆ i(x) for all x and i, then f̃1(x) = f̆1(x) and π̃i = π̆i for all x and
i. Suppose f̃1(x′) = 0 for some x′ ∈ [0, 1]. If π̃i < π̆i for some i, then we have

0 =
f̃1(x′)

f0(x′)
=
π̆i − π̃i
1− π̃i

+
(1− π̆i)f̆1(x′)

(1− π̃i)f0(x′)
> 0,(4)

which is a contradiction. Similarly, we get a contradiction when π̃i > π̆i
for some i. Thus we have π̃i = π̆i for all i. As there exists a i such that
1− π̃i = 1− π̆i > 0, it is clear that f̃ i(x) = f̆ i(x) implies that f̃1(x) = f̆1(x).

In statistical and scientific applications, the goal is to separate the alter-
native cases (θi = 1) from the null cases (θi = 0). This can be formulated
as a multiple testing problem, with solutions represented by a decision rule
δ = (δ1, . . . , δm) ∈ {0, 1}m. It turns out that the optimal decision rule is
closely related to the Lfdr defined as

Lfdri(x) := P (θi = 0 | xi = x) =
π0if0(x)

π0if0(x) + (1− π0i)f1(x)
=
π0if0(x)

f i(x)
.

In other words, Lfdri(x) is the posterior probability that a case is null given
the corresponding p-value is equal to x. It combines the auxiliary information
(π0i) and data from the current experiment. Information across tests is used
in forming f0(·) and f1(·).

Optimal decision rule under mixture model has been extensively stud-
ied in the literature, see e.g., [46; 30; 3]. For completeness, we present the
derivations below and remark that they follow somewhat directly from ex-
isting results. Consider the expected number of false positives (EFP) and
true positives (ETP) of a decision rule. Suppose that xi follows the mixture
model (2) and we intend to reject the ith null hypothesis if xi ≤ ci. The size
and power of the ith test are given respectively by

αi(ci) =

∫ ci

0
f0(t)dt and βi(ci) =

∫ ci

0
f1(t)dt.

It thus implies that

EFP(c) =

m∑
i=1

π0iαi(ci) and ETP(c) =

m∑
i=1

(1− π0i)βi(ci),

where c = (c1, . . . , cm). We wish to maximize ETP for a given value of the
marginal FDR (mFDR) defined as

mFDR(c) =
EFP(c)

ETP(c) + EFP(c)
,(5)
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by an optimum choice of the cutoff value c. Formally, consider the problem

max
c

ETP(c) subject to mFDR(c) ≤ α.(6)

A standard Lagrange multiplier argument gives the following result which
motivates our choice of thresholds.

Proposition 2.1. Assume that f1 is continuously non-increasing, and
f0 is continuously non-decreasing and uniformly bounded from above. Fur-
ther assume that for a pre-specified α > 0,

(7) min
i

(1− π0i)f1(0)

π0if0(0)
>

1− α
α

.

Then (6) has at least one solution and every solution (c̃1, . . . , c̃m) satisfies

Lfdri(c̃i) = λ̃

for some λ̃ that is independent of i.

The proof of Proposition 2.1 is similar to that of Theorem 2 in [30] and we
omit the details. Under the monotone likelihood ratio assumption [45; 10]:

(8) f1(x)/f0(x) is decreasing in x,

we obtain that Lfdri(x) is monotonically increasing in x. Therefore, we may
reduce our attention to the rejection rule I{xi ≤ ci} as

(9) δi = I{Lfdri(xi) ≤ λ}

for a constant λ to be determined later.

2.2. Asymptotic FDR control. To fully understand the proposed method,
we gradually investigate its theoretical properties through several steps,
starting with an oracle procedure which provides key insights into the prob-
lem. Assume that {π0i}mi=1, f0(·) and f1(·) are known. The proposed method
utilizes auxiliary information through {π0i}mi=1 and information from the al-
ternative through f1(·) in addition to information from the null, upon which
conventional approaches are based. In view of (9), the number of false re-
jections equals to

Vm(λ) =

m∑
i=1

I{Lfdri(xi) ≤ λ}(1− θi)
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and the total number of rejections is given by

Dm,0(λ) =
m∑
i=1

I{Lfdri(xi) ≤ λ}.

Write a ∨ b = max{a, b} and a ∧ b = min{a, b}. We aim to find the
critical value λ in (9) that controls the FDR, which is defined as FDRm(λ) =
E{Vm(λ)/(Dm,0(λ) ∨ 1)} at a pre-specified significance level α. Note that

E[Vm(λ)] =
m∑
i=1

π0iP (Lfdri(xi) ≤ λ|θi = 0) =
m∑
i=1

E[Lfdri(xi)I{Lfdri(xi) ≤ λ}].

(10)

An estimate of the FDRm(λ) is given by

FDRm(λ) =

∑m
i=1 Lfdri(xi)I{Lfdri(xi) ≤ λ}∑m

i=1 I{Lfdri(xi) ≤ λ}
.

Let λm = sup{λ ∈ [0, 1] : FDRm(λ) ≤ α}. Then reject Hi if Lfdri(xi) ≤ λm.
Below we show that the above (oracle) step-up procedure provides asymp-
totic control on the FDR under the following assumptions.

(C1) Assume that for any λ ∈ [0, 1],

1

m

m∑
i=1

I{Lfdri(xi) ≤ λ} →p D0(λ),

1

m

m∑
i=1

Lfdri(xi)I{Lfdri(xi) ≤ λ} →p D1(λ),

and

(11)
1

m
Vm(λ)→p D1(λ),

where D0 and D1 are both continuous functions over [0, 1].
(C2) Write R(λ) = D1(λ)/D0(λ), where D0 and D1 are defined in (C1).

There exists a λ∞ ∈ (0, 1] such that R(λ∞) < α.

We remark that (C1) is similar to those for Theorem 4 in [42]. In view
of (10), (11) follows from the weak law of large numbers. Note that (C1)
allows certain forms of dependence, such as m-dependence, ergodic depen-
dence and certain mixing type dependence. (C2) ensures the existence of the
critical value λm to asymptotically control the FDR at level α. The follow-
ing proposition shows that the oracle step-up procedure provides asymptotic
FDR control.
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Proposition 2.2. Under conditions (C1)-(C2),

lim sup
m→∞

FDRm(λm) ≤ α.

The proof of Proposition 2.2 is relegated in the Appendix. In the follow-
ing, we mimic the operation of the oracle procedure and provide an adaptive
procedure. In the inference problems that we are interested in, the p-value
distribution under the null hypothesis is assumed to be known (e.g., the uni-
form distribution on [0, 1], or can be obtained from the distributional theory
of the test statistic in question). Below we assume f0 is known and remark
that our result still holds provided that f0 can be consistently estimated. In
practice, f1 and {π0i}mi=1 are often unknown and replaced by their sample
counterparts. Let f̂1(·) and {π̂0i}mi=1 be the estimators of f1(·) and {π0i}mi=1

respectively. Define

L̂fdri(x) =
π̂0if0(x)

π̂0if0(x) + (1− π̂0i)f̂1(x)
=
π̂0if0(x)

f̂ i(x)
,

where f̂ i(x) = π̂0if0(x) + (1 − π̂0i)f̂1(x). A natural estimate of λm can be
obtained through

λ̂m = sup

{
λ ∈ [0, 1] :

∑m
i=1 L̂fdri(xi)I{L̂fdri(xi) ≤ λ}∑m

i=1 I{L̂fdri(xi) ≤ λ}
≤ α

}
.

Reject the ith hypothesis if L̂fdri(xi) ≤ λ̂m. This is equivalent to the fol-

lowing step-up procedure that was originally proposed in [45]. Let L̂fdr(1) ≤
· · · ≤ L̂fdr(m) be the order statistics of {L̂fdr1(x1), . . . , L̂fdrm(xm)} and de-

note by H(1), . . . ,H(m) the corresponding ordered hypotheses. Define

k̂ := max

1 ≤ i ≤ m :
1

i

i∑
j=1

L̂fdr(j) ≤ α

 ;

then reject all H(i) for i = 1, . . . , k̂.

We show that this step-up procedure provides asymptotic control on the
FDR. To facilitate the derivation, we make the following additional assump-
tion.

(C3) Assume that

1

m

m∑
i=1

|L̂fdri(xi)− Lfdri(xi)| →p 0.
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(C3) requires the Lfdr estimators to be consistent in terms of the empirical
L1 norm. We shall justify Condition (C3) in Section 3.3.

Theorem 2.3. Under Conditions (C1)-(C3),

lim sup
m→∞

FDRm(λ̂m) ≤ α.

Theorem 2.3 indicates that we can obtain asymptotic control on the FDR
using the data-adaptive procedure when relevant consistent estimates are
available. Similar algorithm has been obtained in [45], where it is assumed
that the hypotheses are exchangeable in the sense that π01 = · · · = π0m.

3. Estimating the unknowns.

3.1. The density function f1(·) is known. We first consider the case that
f0(·) and f1(·) are both known. Under such setup, we need to estimate m
unknown parameters π0i, i = 1, . . . ,m, which is prohibitive without addi-
tional constraints. One constraint that makes the problem solvable is the
monotone constraint. In statistical genetics and genomics, investigators can
use auxiliary information (e.g., p-values from previous or related studies)
to generate a ranked list of hypotheses H1, . . . ,Hm even before performing
the experiment, where H1 is the hypothesis that the investigator believes to
most likely correspond to a true signal, while Hm is the one believed to be
least likely. Specifically, let Π0 = (π01, . . . , π0m) ∈ (0, 1)m. Define the convex
set

M = {Π = (π1, . . . , πm) ∈ (0, 1)m : 0 ≤ π1 ≤ . . . ≤ πm ≤ 1}.

We illustrate the motivation for the monotone constraint with an example.

Example 3.1. Suppose that we are given data consisting of a pair of
values (xi1, xi2), where xi1 represents the p-value, xi2 represents auxiliary
information and they are independent conditional on the hidden true state
θi for i = 1, . . . ,m. Suppose

(12) xij | θi
ind∼ (1− θi)f0,j(xij) + θif1,j(xij), i = 1, . . . ,m, j = 1, 2,

where θi = 1 if Hi is alternative and θi = 0 if Hi is null, f0,j(·) is the
density function of p-values or auxiliary variables under the null hypothesis
and f1,j(·) is the density function of p-values or auxiliary variables under
the alternative hypothesis. Suppose P (θi = 0) = τ0 for all i = 1, . . . ,m.
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Using the Bayes rule and the independence between xi1 and xi2 given θi, i =
1, . . . ,m, we have the conditional distribution of xi1 | xi2 as follows:

f(xi1 | xi2)

=
f(xi1, xi2 | θi = 0)τ0 + f(xi1, xi2 | θi = 1)(1− τ0)

f(xi2 | θi = 0)τ0 + f(xi2 | θi = 1)(1− τ0)

=
f(xi1 | θi = 0)f(xi2 | θi = 0)τ0 + f(xi1 | θi = 1)f(xi2 | θi = 1)(1− τ0)

f(xi2 | θi = 0)τ0 + f(xi2 | θi = 1)(1− τ0)

=
f0,1(xi1)f0,2(xi2)τ0 + f1,1(xi1)f1,2(xi2)(1− τ0)

f0,2(xi2)τ0 + f1,2(xi2)(1− τ0)

=f0,1(xi1)γ0(xi2) + f1,1(xi1)(1− γ0(xi2)),

where

γ0(x) =
f0,2(x)τ0

f0,2(x)τ0 + f1,2(x)(1− τ0)
=

τ0

τ0 +
f1,2(x)
f0,2(x)(1− τ0)

.

If f1,2(x)/f0,2(x) is a monotonic function, so is γ0(x). Therefore, the order
of xi2 generates a ranked list of the hypotheses H1, . . . ,Hm through the
conditional prior probability γ0(x).

We estimate Π0 by solving the following maximum likelihood problem:

Π̂0 = (π̂01, . . . , π̂0m) = argmax
Π=(π1,...,πm)∈M

lm(Π),

lm(Π) :=
m∑
i=1

log {πif0(xi) + (1− πi)f1(xi)} .
(13)

It is easy to see that (13) is a convex optimization problem. Let φ(x, a) =
af0(x) + (1 − a)f1(x). To facilitate the derivations, we shall assume that
f0(xi) 6= f1(xi) for all i, which is a relatively mild requirement. Under
this assumption, it is straightforward to see that for any 1 ≤ k ≤ l ≤ m,∑l

i=k log φ(xi, a) is a strictly concave function for 0 < a < 1. Let âkl =

argmaxa∈[0,1]

∑l
i=k log φ(xi, a) be the unique maximizer. According to The-

orem 3.1 of [37], we have

π̂0i = max
1≤k≤i

min
i≤l≤m

âkl.(14)

However, this formula is not practically useful due to the computational
burden when m is very large. Below we suggest a more efficient way to solve
problem (13). A general algorithm when f1 is unknown is provided in the
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next subsection. The main computational tools are the EM algorithm for
two-group mixture model and the Pool-Adjacent-Violator-Algorithm from
isotonic regression for the monotone constraint on the prior probability of
null hypothesis [12; 38]. We provide the derivation of the EM algorithm
from the full data likelihood in the appendix. In particular, let Π(t) =

(π̂
(t)
01 , . . . , π̂

(t)
0m) be the solution at the tth iteration. Define

Q
(t)
j := Q

(t)
j (π̂

(t)
0j ) =

π̂
(t)
0j f0(xj)

π̂
(t)
0j f0(xj) + (1− π̂(t)

0j )f1(xj)
,

Q(Π|Π(t)) =

m∑
j=1

{Q(t)
j log(πj) + (1−Q(t)

j ) log(1− πj)}.

At the (t+ 1)th iteration of the EM algorithm, we solve the following prob-
lem,

Π(t+1) = argmax
Π=(π1,...,πm)∈M

Q(Π|Π(t)).(15)

By Theorem 1.5.1 of [38] or Theorem 3.1 of [37], we only need to solve the
isotonic regression problem,

Π(t+1) = argmin
Π=(π1,...,πm)∈M

m∑
j=1

{
Q

(t)
j − πj

}2
.(16)

The solution to (16) has an explicit form given by the max-min formula,

π̂
(t+1)
0i = max

a≤i
min
b≥i

∑b
j=aQ

(t)
j

b− a+ 1
,

which can be obtained conveniently using the Pool-Adjacent-Violators Algo-

rithm (PAVA) [38]. Note that if Q
(t)
1 ≥ Q

(t)
2 ≥ · · ·Q

(t)
m , then the solution to

(16) is simply given by π̂
(t+1)
0i =

∑m
j=1Q

(t)
j /m for all 1 ≤ i ≤ m. As the EM

algorithm is a hill-climbing algorithm, it is not hard to show that lm(Π(t))
is a non-decreasing function of t.

We study the asymptotic consistency of the true maximum likelihood
estimator Π̂0 which can be represented as (14). To this end, consider the
model

xi
ind∼ π0if0 + (1− π0i)f1, π0i = π0(i/m)1,

for some non-decreasing function π0 : [0, 1]→ [0, 1]. Our first result concerns
the point-wise consistency for each π̂0i. For a set A, denote by card(A) its
cardinality.

1For the ease of presentation, we suppress the dependence on m in π0i.
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Theorem 3.1. Assume that
∫

(log fi(x))2fj(x)dx < ∞ for i, j = 0, 1,
and P (f0(xi) = f1(xi)) = 0. Suppose 0 < π0(0) ≤ π0(1) < 1. For any
ε > 0, let 0 ≤ t′ < i0/m < t′′ ≤ 1 such that |π0(t′) − π0(i0/m)| ∨ |π0(t′′) −
π0(i0/m)| < ε/2. Denote A1 = {i : t′ ≤ i/m ≤ i0/m} and A2 = {i : i0/m ≤
i/m ≤ t′′}. For card(A1) ∧ card(A2) ≥ N, we have

P (|π̂0,i0 − π0,i0 | < ε) ≥ 1−O
(

1

ε2N

)
.

The condition on the cardinalities of A1 and A2 guarantees that there are
sufficient observations around i0/m, which allows us to borrow information
to estimate π0,i0 consistently. The assumption P (f0(xi) = f1(xi)) = 0 en-
sures that the maximizer âkl is unique for 1 ≤ k ≤ l ≤ m. It is fulfilled if
the set {x ∈ [0, 1] : f0(x) = f1(x)} has zero Lebesgue measure. As a direct
consequence of Theorem 3.1, we have the following uniform consistency re-
sult of Π̂0. Due to the monotonicity, the uniform convergence follows from
the pointwise convergence.

Corollary 3.2. For ε > 0, suppose there exists a set i1 < i2 < · · · <
il, where each ik satisfies the assumption for i0 in Theorem 3.1 and that
max2≤k≤l(π0,ik − π0,ik−1

) < ε. Then we have

P

(
max
i1≤i≤il

|π̂0,i − π0,i| < ε

)
≥ 1−O

(
l

ε2N

)
.

Remark 3.1. Suppose π0 is Lipschitz continuous with the Lipschitz con-
stant K. Then we can set t′′ = (i0−1)/m+ε/(2K), t′ = (i0 +1)/m−ε/(2K)
and thus N = bmε/(2K)c. Our result suggests that

P (|π̂0,i0 − π0,i0 | < ε) ≥ 1−O
(
K

ε3m

)
,

which implies that |π̂0,i0 − π0,i0 | = Op(m
−1/3).

3.2. The density function f1(·) is unknown. In practice, f1 and Π0 are
both unknown. We propose to estimate f1 and Π0 by maximizing the like-
lihood, i.e.,

(17) (Π̂0, f̂1) = argmax
Π∈M,f̃1∈H

m∑
i=1

log
{
πif0(xi) + (1− πi)f̃1(xi)

}
,

where H is a pre-specified class of density functions. In (17), H might be the
class of beta mixtures or the class of decreasing density functions. Problem

13



(17) can be solved by Algorithm 1. A derivation of Algorithm 1 from the
full data likelihood that has access to latent variables is provided in the
Appendix. Our algorithm is quite general in the sense that it allows users
to specify their own updating scheme for the density components in (19).
Both parametric and non-parametric methods can be used to estimate f1.

Algorithm 1

0. Input the initial values (Π(0), f
(0)
1 ).

1. E-step: Given (Π̂(t), f̂
(t)
1 ), let

Q
(t)
i =

π̂
(t)
0i f0(xi)

π̂
(t)
0i f0(xi) + (1 − π̂

(t)
0i )f̂

(t)
1 (xi)

.

2. M-step: Given Q
(t)
i , update (Π, f1) through

(π̂
(t+1)
01 , . . . , π̂

(t+1)
0m ) = argmin

Π=(π1,...,πm)∈M

m∑
i=1

(
Q

(t)
i − πi

)2

,(18)

and

f̂
(t+1)
1 = argmax

f̃1∈H

m∑
i=1

(1 −Q
(t)
i ) log f̃1(xi).(19)

3. Repeat the above E-step and M-step until the algorithm converges.

In the multiple testing literature, it is common to assume that f1 is a
decreasing density function (e.g., smaller p-values imply stronger evidence
against the null), see e.g. [29]. As an example of the general algorithm, let H
denote the class of decreasing density functions. We shall discuss how (19)
can be solved using the PAVA. The key recipe is to use Theorem 3.1 of [4]
in obtaining f1 evaluated at the observed p-values. Specifically, it can be
accomplished by a series of steps outlined below. Define the order statistics

of {xi} as x(1) ≤ x(2) ≤ · · · ≤ x(m). Let Q
(t)
(i) be the corresponding Q

(t)
i that

is associated with x(i).
Step 1: The objective function in (19) only looks at the value of f1 at x(i).
The objective function increases if f1(x(i)) increases, and the value of f1

at (x(i−1), x(i)) has no impact on the objective function (where x(0) = 0).
Therefore, if f maximizes the objective function, there is a solution that is
constant on (x(i−1), x(i)].
Step 2: Let yi = f1(x(i)). We only need to find yi which maximizes

m∑
i=1

(1−Q(t)
(i)) log(yi),
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subject to y1 ≥ y2 ≥ · · · ≥ ym ≥ 0 and
∑m

i=1 yi(x(i) − x(i−1)) = 1. It can be
formulated as a convex programming problem which is tractable. In Steps
3 and 4 below, we further translate it into an isotonic regression problem.

Step 3: Write Q(t) =
∑m

i=1(1−Q(t)
(i)). Consider the problem:

min

m∑
i=1

{
−(1−Q(t)

(i)) log(yi) +Q(t)yi(x(i) − x(i−1))
}
.

The solution is given by ŷi =
1−Q(t)

(i)

Q(t)(x(i)−x(i−1))
, which satisfies the constraint∑m

i=1 yi(x(i) − x(i−1)) = 1 in Step 2.
Step 4: Rewrite the problem in Step 3 as

min

m∑
i=1

(1−Q(t)
(i))

− log(yi)−
−Q(t)(x(i) − x(i−1))

(1−Q(t)
(i))

yi

 .

This is the generalized isotonic regression problem considered in Theorem
3.1 of [4]. Let

(û1, . . . , ûm) = argmin

m∑
i=1

(1−Q(t)
(i))

−Q(t)(x(i) − x(i−1))

(1−Q(t)
(i))

− ui

2

subject to u1 ≥ u2 ≥ · · · ≥ um. The solution is given by the max-min
formula

ûi = max
b≥i

min
a≤i

−Q(t)
∑b

j=a(x(j) − x(j−1))∑b
j=a(1−Q

(t)
(j))

,

which can be obtained using the PAVA. By Theorem 3.1 of [4], we arrive
at the solution to the original problem (19) by letting ỹi = − 1

ûi
. Therefore,

in the EM-algorithm, one can employ the PAVA to estimate both the prior
probabilities of being null and the p-value density function under the alterna-
tive hypothesis. Because of this, our algorithm is fast and tuning parameter
free, and is very easy to implement in practice.

3.3. Asymptotic convergence and verification of Condition (C3). In this
subsection, we present some convergence results regarding the proposed es-
timators in Section 3.2. Furthermore, we propose a refined estimator for π0,
and justify Condition (C3) for the corresponding Lfdr estimator. Through-
out the following discussions, we assume that

xi ∼ f i = π0(i/m)f0 + (1− π0(i/m))f1
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independently for 1 ≤ i ≤ m and π0 : [0, 1] → [0, 1] with π0(i/m) = π0i.
Let F be the class of densities defined on [0, 1]. For f, g ∈ F , we define the
squared Hellinger-distance as

H2(f, g) =
1

2

∫ 1

0
(
√
f(x)−

√
g(x))2dx = 1−

∫ 1

0

√
f(x)g(x)dx.

Suppose the true alternative density f1 belongs to a class of decreasing
density functions H ⊂ F . Let Ξ = {π : [0, 1]→ [0, 1], 0 < ε < π(0) ≤ π(1) <
1 − ε < 1, and π(·) is nondecreasing} and assume that π0 ∈ Ξ. Consider
f̃ i = π̃(i/m)f0 + (1 − π̃(i/m))f̃1 and f̆ i = π̆(i/m)f0 + (1 − π̆(i/m))f̆1 for
1 ≤ i ≤ m, f̃1, f̆1 ∈ H and π̃, π̆ ∈ Ξ. Define the average squared Hellinger-
distance between (π̃, f̃1) and (π̆, f̆1) as

H2
m((π̃, f̃1), (π̆, f̆1)) =

1

m

m∑
i=1

H2(f̃ i, f̆ i).

Suppose (π̂0, f̂1) is an estimator of (π0, f1) such that

m∑
i=1

log

(
2f̂ i(xi)

f̂ i(xi) + f i(xi)

)
≥ 0,

where f̂ i(x) = π̂0(i/m)f0(x) + (1 − π̂0(i/m))f̂1(x). Note that we do not
require (π̂0, f̂1) to be the global maximizer of the likelihood. We have the
following result concerning the convergence of (π̂0, f̂1) to (π0, f1) in terms of
the average squared Hellinger-distance.

Theorem 3.3. Suppose π0 ∈ Ξ, f0 ≡ 1, and f1 ∈ H. Under the assump-
tion that

∫ 1
0 f

1+a
1 (x)dx <∞ for some 0 < a ≤ 1, we have

P
(
Hm((π0, f1), (π̂0, f̂1)) > Mm−1/3

)
≤M1 exp(−M2m

1/3),

for some M,M1 and M2 > 0. We remark that f1(x) = (1 − γ)x−γ with
0 < γ < 1 satisfies

∫ 1
0 f

1+a
1 (x)dx <∞ for 0 < a < (1/γ − 1) ∧ 1.

Theorem 3.3 follows from an application of Theorem 8.14 in [48]. By the
Cauchy-Schwarz inequality, it is known that∫ 1

0
|f(x)− g(x)|dx ≤2H(f, g)

√
2−H2(f, g).
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Under the conditions in Theorem 3.3, we have

1

m

m∑
i=1

∫ 1

0
|f̂ i(x)− f i(x)|dx = Op(m

−1/3).(20)

However, π0 and f1 are generally unidentifiable without extra conditions.
Below we focus on the case f0 ≡ 1. The model is identifiable in this case
if there exists an a0 ≤ 1 such that f1(a0) = 0. If f1 is decreasing, then
f1(x) = 0 for x ∈ [a0, 1]. Suppose a0 < 1. For a sequence bm ∈ (0, 1) such
that ∫ 1

bm
f1(x)dx

1− bm
= o(1),

m−1/3

1− bm
= o(1),(21)

as m→ +∞, we define the refined estimator for π0(i/m) as

π̆0(i/m) =
1

1− bm

∫ 1

bm

f̂ i(x)dx = π̂0(i/m) + (1− π̂0(i/m))

∫ 1
bm
f̂1(x)dx

1− bm
.

Under (21), we have

1

m

m∑
i=1

|π̆0(i/m)− π0(i/m)|

=
1

m(1− bm)

m∑
i=1

∣∣∣∣∫ 1

bm

f̂ i(x)dx−
∫ 1

bm

f i(x)dx

∣∣∣∣+ op(1)

≤ 1

m(1− bm)

m∑
i=1

∫ 1

0
|f̂ i(x)− f i(x)|dx+ op(1) = op(1).

(22)

Given the refined estimator π̆0, the Lfdr can be estimated by

L̂fdri(xi) =
π̆0(i/m)

f̂ i(xi)
.

As π̂0, π0 ∈ Ξ and thus are bounded from below, by (20) and (22), it is not
hard to show that

1

m

m∑
i=1

∫ 1

0
|L̂fdri(x)− Lfdri(x)|dx = op(1).(23)

Moreover, we have the following result which justifies Condition (C3).
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Corollary 3.4. Suppose π0 ∈ Ξ, f0 ≡ 1, and f1 ∈ H. Further assume
D0 in Condition (C1) is continuous at zero and (21) holds. Then Condition
(C3) is fulfilled.

Remark 3.2. Although bm needs to satisfy (21) theoretically, the rate
condition is of little use in selecting bm in practice. We use a simple heuristic
procedure that performs reasonably well in our simulations. To motivate our
procedure, we let θ indicate the underlying truth of a randomly selected
hypothesis from {Hi}mi=1. Then we have

P (θ = 0) =
1

m

m∑
i=1

P (θi = 0) =
1

m

m∑
i=1

π0(i/m) := π̄m.

Without knowing the order information, the p-values follow the mixture
model π̄mf0(x) + (1− π̄m) f1(x). The overall null proportion π̄m can be
estimated by classical methods such as those proposed by [41] (in prac-
tice, we use the maximum of the two Storey’s global null proportion esti-
mates in the qvalue package for more conservativeness). Denote the cor-
responding estimator by π̂. Also denote π̆ = m−1

∑m
i=1 π̆0(i/m), where

π̆0(i/m) = π̂0(i/m) + δ(1− π̂0(i/m)) is the calibrated null probability and δ
is the amount of calibration, which is a function of bm. Then it makes sense
to choose bm ∈ [0, 1] such that the difference |π̆ − π̂| is minimized. This re-
sults in the procedure that if the mean of π̂0(i/m)’s from the EM algorithm
(denote as π̃) is greater than the global estimate π̂, π̆0(i/m) = π̂0(i/m), and
if the mean is less than π̂, then π̆0(i/m) = π̂0(i/m) + δ(1− π̂0(i/m)), where
δ = (π̂ − π̃)/(1− π̃).

3.4. Asymptotic power analysis. We provide asymptotic power analysis
for the proposed method. In particular, we have the following result con-
cerning the asymptotic power of the Lfdr procedure in Section 2.2.

Theorem 3.5. Suppose Conditions (C1)-(C3) hold and additionally as-
sume that

1

m

m∑
i=1

1{θi = 0} → κ0,

1

m

m∑
i=1

1{θi = 1,Lfdri(xi) ≤ λ} →p D2(λ),

for a continuous function D2 of λ on [0,1]. Let λ0 be the largest λ ∈ [0, 1]
such that R(λ) ≤ α and for any small enough ε, R(λ0 − ε) < α. Then we
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have

PowerLfdr :=

∑m
i=1 1{θi = 1, L̂fdri(xi) ≤ λ̂m}∑m

i=1 1{θi = 1} ∨ 1
→p D2(λ0)

1− κ0
.

Recall that in Section 2.1, we have shown that the step-up procedure has
the highest expected number of true positives amongst all α-level FDR rules.
This result thus sheds some light on the asymptotic optimal power amongst
all α-level FDR rules when the number of hypothesis tests goes to infinity.

Remark 3.3. Under the two-group mixtue model (1)-(2) with π0i =
π0(i/m) for some non-decreasing function π0, we have m−1

∑m
i=1 P (θi =

0) = m−1
∑m

i=1 π0(i/m) →
∫ 1

0 π0(x)dx as monotonic functions are Rie-

mann integrable. Thus κ0 =
∫ 1

0 π0(x)dx. Define g(x) = sup{t ∈ [0, 1] :

f1(t)/f0(t) ≥ x} and w(λ, x) = π0(x)(1−λ)
(1−π0(x))λ . Denote by F1 the distribution

function of f1. Then we have

1

m

m∑
i=1

P (θi = 1,Lfdri(xi) ≤ λ) =
1

m

m∑
i=1

P (θi = 1)P (Lfdri(xi) ≤ λ|θi = 1)

=
1

m

m∑
i=1

(1− π0(i/m))F1 ◦ g ◦ w(λ, i/m)

→
∫ 1

0
(1− π0(x))F1 ◦ g ◦ w(λ, x)dx,

where “◦” denotes the composition of two functions, and we have used the
fact that F1 ◦ g ◦w is monotonic and thus Riemann integrable. So D2(λ) =∫ 1

0 (1− π0(x))F1 ◦ g ◦ w(λ, x)dx.

4. Two extensions.

4.1. Grouped hypotheses with ordering. Our idea can be extended to the
case where the hypotheses can be divided into d ≥ 2 groups within which
there is no explicit ordering but between which there is an ordering. One
can simply modify (18) by considering the problem,

(24) (π̂
(t+1)
01 , . . . , π̂

(t+1)
0d ) = argmin

m∑
j=1

{
Q̃

(t)
j − πs(j)

}2
2,

2This optimization problem can be solved by slightly modifying the PAVA by averaging
the estimators within each group.
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subject to 0 ≤ π1 ≤ · · · ≤ πd ≤ 1, where s(j) ∈ {1, 2, . . . , d} is the group
index for the jth hypothesis. A particular example is about using the sign to
improve power while controlling the FDR. Consider a two-sided test where
the null distribution is symmetric and the test statistic is the absolute value
of the symmetric statistic. The sign of the statistic is independent of the p-
value under the null. If we have a priori belief that among the alternatives,
more hypotheses have true positive effect sizes than negative ones or vice
versa, then sign could be used to divide the hypotheses into two groups such
that π1 ≤ π2 (or π1 ≥ π2).

4.2. Varying alternative distributions. In model (1), we assume that the
success probabilities π0i, i = 1, . . . ,m vary with i while F1 is independent of
i. This assumption is reasonable in some applications but it can be restrictive
in other cases. We illustrate this point via a simple example described below.

Example 4.1. For 1 ≤ i ≤ m, let {xik}nik=1 be ni observations generated
independently from N(µi, 1). Consider the one sided z-test Zi =

√
nix̄i with

x̄i = n−1
i

∑ni
k=1 xik for testing

Hi0 : µi = 0 vs Hia : µi < 0.

The p-value is equal to pi = Φ(
√
nix̄i) and the p-value distribution under

the alternative hypothesis is given by

F1i(x) = Φ
(
Φ−1(x)−

√
niµi

)
,

with the density

f1i(x) =
φ(Φ−1(x)−√niµi)

φ(Φ−1(x))
= exp

(
2
√
niµiΦ

−1(x)− niµ2
i

2

)
.

By prioritizing the hypotheses based on the values of
√
niµi, one can expect

more discoveries. Suppose

n1µ
2
1 ≤ n2µ

2
2 ≤ · · · ≤ nmµ2

m.
3

One can consider the following problem to estimate π and µi simultaneously,

argmax
π∈[0,1],rm≤rm−1≤···≤r1<0

m∑
i=1

log

{
π + (1− π) exp

(
2riΦ

−1(pi)− r2
i

2

)}
.

This problem can again be solved using the EM algorithm together with the
PAVA.

3This is the case if µi = µ and n1 ≤ n2 ≤ · · · ≤ nm.
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Generally, if the p-value distribution under the alternative hypothesis,
denoted by F1i, is allowed to vary with i, model (1)-(2) is not estimable
without extra structural assumptions as we only have one observation that
is informative about F1i. On the other hand, if we assume that F1i := F1,i/m

which varies smoothly over i, then one can use non-parametric approach to
estimate each F1,i/m based on the observations in a neighborhood of i/m.
However, this method requires the estimation of m density functions at
each iteration, which is computationally expensive for large m. To reduce
the computational cost, one can divide the indices into K consecutive bins,
say S1, S2, . . . , SK , and assume that the density remains unchanged within
each bin. In the M-step, we update f1i via

f
(t+1)
1i = argmax

f̃1∈H

∑
j∈Si

(1−Q(t)
j ) log f̃1(xj),(25)

for i = 1, 2, . . . ,K. For small K, the computation is relatively efficient. We
note that this strategy is related to the independent hypothesis weighting
proposed in [25; 26], which divides the p-values into several bins and estimate
the cumulative distribution function (CDF) of the p-values in each stratum.
Our method is different from theirs in the following aspect: the estimated
densities will be used in constructing the optimal rejection rule, while in
their procedure, the varying CDF is used as an intermediate quantity to
determine the thresholds for p-values in each stratum. In other words, the
estimated CDFs are not utilized optimally in constructing the rejection rule.

5. Simulation studies.

5.1. Simulation setup. We conduct comprehensive simulations to eval-
uate the finite-sample performance of the proposed method and compare
it to competing methods. For simplicity, we directly simulate z-values for
m=10, 000 hypotheses. All simulations are replicated 100 times except for
the global null, where the results are based on 2,000 Monte Carlo replicates.
We simulate different combinations of signal density (the percentage of al-
ternative) and signal strength (the effect size of alternative) since these are
two main factors affecting the power of multiple testing procedures. We first
generate the hypothesis-specific null probability (π0i), upon which the truth,
i.e., null or alternative, is simulated. Afterwards, we generate z-values based
on the truth of the hypothesis. We first use π0i as the auxiliary covariate.
Later, we will study the effect of using noisy π0i as auxiliary covariate. Three
scenarios, representing weakly, moderately and highly informative auxiliary
information, are simulated based on the distribution of π0i (Figure 1(a)),
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where the informativeness of the auxiliary covariate is determined based on
its ability to separate alternatives from nulls (Figure 1(b)). In the weakly
informative scenario, we make π0i’s similar for all hypotheses by simulating
π0i’s from a highly concentrated normal distribution (truncated on the unit
interval [0, 1])

π0i ∼ NC(µw, 0.0052).

In the moderately informative scenario, we allow π0i to vary across hypothe-
ses with moderate variability. This is achieved by simulating π0i’s from a beta
distribution

π0i ∼ Beta(a, b).

In the highly informative scenario, π0i’s are simulated from a mixture of a
truncated normal and a highly concentrated truncated normal distribution

π0i ∼ πhNC(µh1, σ
2
h1) + (1− πh)NC(µh2, 0.0052),

which represents two groups of hypotheses with strikingly different proba-
bilities of being null. Since the expected alternative proportion is∑m

i=1 (1− π0i)/m, we adjust the parameters µw, a, b, πh, µh1, σ
2
h1 and µh2 to

achieve approximately 5%, 10% and 20% signal density level. Figure 1(a)
shows the distribution of π0i for the three scenarios. Based on π0i, the un-
derlying truth θi is simulated from

θi ∼ Bernoulli(1− π0i).

Figure 1(b) displays the distribution of π0i for θi= 1 and θi= 0 from one
simulated dataset. As the difference in π0i between H1 and H0 gets larger,
the auxiliary covariate becomes more informative. Finally, we simulate in-
dependent z-values using

zi ∼ N(ksθi, 1),

where ks controls the signal strength and ks=2, 2.5 and 3 are chosen to
represent weak, moderate and strong signal, respectively. We convert z-
values to p-values using the formula pi = 1 − Φ(zi). The proposed method
accepts p-values and π0is as input. The specific parameter values mentioned
above could be found in https://github.com/jchen1981/OrderShapeEM.

To examine the robustness of the proposed method, we vary the simula-
tion setting in different ways. Specifically, we investigate:

1. Skewed alternative distribution. Instead of simulating normal z-values
for the alternative group, we simulate z-values from a non-central
gamma distribution with the shape parameter k= 2. The scale and
non-centrality parameters of the non-central gamma distribution are
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Fig 1: Simulation Strategy. (a) The distribution of probabilities of being
null (π0i, i = 1, . . . ,m) for three scenarios representing weakly, moderately
and highly informative auxiliary information (from bottom to top). Different
levels of signal density are simulated. (b) Distribution of the realized π0i for
alternatives and nulls from one simulated dataset.
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chosen to match the mean and variance of the normal distribution for
the alternative group under the basic setting.

2. Correlated hypotheses. Our theory allows certain forms of dependence.
We then simulate correlated z-values, which are drawn from a mul-
tivariate normal distribution with a block correlation structure. The
order of π0i is random with respect to the block structure. Specifically,
we divide the 10, 000 hypotheses into 100 blocks and each block is fur-
ther divided into two sub-blocks of equal size. Within each sub-block,
there is a constant positive correlation (ρ=0.5). Between the sub-blocks
in the same block, there is a constant negative correlation (ρ=−0.5).
Hypotheses in different blocks are independent. We use p = 8 to illus-
trate. The correlation matrix is

1 0.5 0.5 0.5 −0.5 −0.5 −0.5 −0.5
0.5 1 0.5 0.5 −0.5 −0.5 −0.5 −0.5
0.5 0.5 1 0.5 −0.5 −0.5 −0.5 −0.5
0.5 0.5 0.5 1 −0.5 −0.5 −0.5 −0.5
−0.5 −0.5 −0.5 −0.5 1 0.5 0.5 0.5
−0.5 −0.5 −0.5 −0.5 0.5 1 0.5 0.5
−0.5 −0.5 −0.5 −0.5 0.5 0.5 1 0.5
−0.5 −0.5 −0.5 −0.5 0.5 0.5 0.5 1


.

3. Noisy auxiliary information. In practice, the auxiliary data can be very
noisy. To examine the effect of noisy auxiliary information, we shuffle
half or all the π0i, representing moderately and completely noisy order.

4. A smaller number of alternative hypotheses and a global null. It is
interesting to study the robustness of the proposed method under an
even more sparse signal. We thus simulate 1% alternatives out of 10,000
features. We also study the error control under a global null, where
all the hypotheses are nulls. Under the global null, We increased the
number of Monte Carlo simulations to 2,000 times to have a more
accurate estimate of the FDR.

5. Varying f1 across alternative hypotheses. We consider the case where
among the alternative hypotheses, the most promising 20% hypotheses
(i.e., those with the lowest prior order) follow Unif(0, 0.02) and the
remaining p-values are derived from the z-values (see the setting of
Figure 2).

6. Varying f0 across null hypotheses. Similar to the case of varying f1,
we sample the p-values of 20% of the null hypotheses with the highest
prior order from Unif(0.5, 1), which mimics the composite null situa-
tions. The remaining p-values are derived from the z-values as above.
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We compare the proposed method (OrderShapeEM) with classical mul-
tiple testing methods that do not utilize external covariates (BH and ST)
and recent multiple testing procedures that exploit auxiliary information
(AdaPT, SABHA, AdaptiveSeqStep). Detailed descriptions of these meth-
ods are provided in the appendix. The FDP estimate of AdaPT involves a
finite-sample correction term +1 in the numerator. The +1 term yields a
conservative procedure and could lose power when the signal density is low.
To study the effect of the correction term, we also compared to AdaPT+,
where we removed the correction term +1 in the numerator. However, we ob-
served a significant FDR inflation when the signal density is low, see Figure
14 in the Appendix. We thus compared to AdaPT procedure with correction
term throughout the simulations.

5.2. Simulation results. We first discuss the simulation results of Nor-
mal alternative distribution. In Figure 2, we present FDR control and power
comparison with different methods when z-values under the null hypothesis
follow N(0, 1) and z-values under the alternative hypothesis follow a normal
distribution. In Figure 2(a), the dashed line indicates the pre-specified FDR
control level 0.05 and the error bars represent empirical 95% confidence in-
tervals. We observe that all procedures control the FDR sufficiently well
across settings and no FDR inflation has been observed. Adaptive SeqStep
is conservative most of the time especially when the signal is sparse and
the auxiliary information is weak or moderate. AdaPT is conservative un-
der sparse signal and weak auxiliary information. The proposed procedure
OrderShapeEM generally controls the FDR at the target level with some
conservativeness under some settings. As expected, ST procedure controls
the FDR at the target level while BH procedure is more conservative un-
der dense signal. In Figure 2(b), we observe that OrderShapeEM is overall
the most powerful when the auxiliary information is not weak. When the
auxiliary information is weak and the signal is sparse, OrderShapeEM could
be less powerful than BH/ST. Close competitors are AdaPT and SABHA.
However, AdaPT is significantly less powerful when the signal is sparse and
the auxiliary information is weak. AdaPT is also computationally more in-
tensive than the other methods. SABHA performs well when the signal is
strong but becomes much less powerful than OrderShapeEM and AdaPT as
the signal weakens. Adaptive SeqStep has good power for dense signal and
moderate to strong auxiliary information. However, it is powerless when
auxiliary information is weak. If auxiliary information is weak, SABHA, ST
and BH have similar power, while Adaptive SeqStep has little power. Un-
der this scenario, incorporating auxiliary information does not help much.
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Fig 2: Performance under normal alternative distribution.
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All methods become more powerful with the increase of signal density and
signal strength.

Results for the other settings are included in the Appendix. Briefly, re-
sults based on Skewed alternative distribution and Noisy auxiliary informa-
tion (Figures 5-7) have similar patterns. OrderShapeEM has adequate FDR
control under a smaller number of alternative hypotheses and a global null
(Figures 9-10). Under varying f1, we observe slight inflation for the pro-
posed method under some scenarios especially when the signal density is
low (Figure 11). On the other hand, under varying f0, the proposed method
suffers from severe power deterioration (Figure 12). Although our method
offers asymptotic FDR control and we have observed adequate FDR control
at m = 10, 000, it is interesting to study the performance at a smaller m.
We thus tried m = 500, 1000 and 2000 under the same setup as in Figure
2 with a medium signal density. The results are summarized in Figure 13.
We observe small FDR inflation for these sample sizes and the inflation
increased with smaller sample sizes, particularly for a weaker signal and
less informative prior. We thus recommend using our method when m is
not small (e.g. m > 1000). Since our theory depends on the independence
between hypotheses, we also study the robustness of OrderShapeEM to cor-
related hypotheses. The simulation setup is described in Section 5.1. From
Figure 6(a), we observe that there is more variability across the replications
indicated by a wider confidence interval of the empirical FDR and power.
OrderShapeEM is more conservative under the correlated hypotheses. With
respect to power (Figure 6(b)), when the signal is strong, it could be less
powerful than BH/ST. However, when the signal becomes weaker and the
auxiliary data is informative, OrderShapeEM is more powerful than BH/ST
but is less powerful than AdaPT and SABHA.

Since OrderShapeEM consists of two components: (1) the estimation of
the mixing probabilities and the alternative distribution using PAVA, and
(2) the optimal rejection rule, it is interesting to study the contribution of
each component. We thus apply the SABHA rejection rule using the mixing
probabilities from OrderShapeEM (denoted as “SABHA+”), and compare
to SABHA and OrderShapeEM. In Figure 8 (see “Additional simulation
results”), we observe that SABHA and SABHA+ have a similar performance
across settings, while the OrderShapeEM, which uses the optimal rejection
rule, is much more powerful than SABHA+ and SABHA under weak signal.
The results suggest that the performance improvement of OrderShapeEM
is largely contributed by the proposed optimal rejection rule. Therefore, the
power loss of SABHA under weak signal is likely due to the inefficiency of
its rejection rule.
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6. Data Analysis. We illustrate the application of our method by ana-
lyzing data from publicly available genome-wide association studies (GWAS).
We use datasets from two large-scale GWAS of coronary artery disease
(CAD) in different populations (CARDIoGRAM and C4D). CARDIoGRAM
is a meta-analysis of 14 CAD genome-wide association studies, comprising
22, 233 cases and 64, 762 controls of European descent [39]. The study in-
cludes 2.3 million single nucleotide polymorphisms (SNP). In each of the 14
studies and for each SNP, a logistic regression of CAD status was performed
on the number of copies of one allele, along with suitable controlling co-
variates. C4D is a meta-analysis of 5 heart disease genome-wide association
studies, totaling 15, 420 CAD cases and 15, 062 controls [8]. The samples did
not overlap those from CARDIoGRAM. The analysis steps were similar to
CARDIoGRAM. A total of 514, 178 common SNPs were tested in both the
CARDIoGRAM and C4D association analyses. Dataset can be downloaded
from http://www.cardiogramplusc4d.org. Available data comprise of a
bivariate p-value sequence (x1i, x2i), where x1i represents p-values from the
CARDIoGRAM dataset and x2i represents p-values from the C4D dataset,
i = 1, . . . , 514, 178.

We are interested in identifying SNPs that are associated with CAD. Due
to the shared genetic polymorphisms between populations, information con-
tained in xi1 can be helpful in the association analysis of x2i and vice versa.
We thus performed two separate analyses, where we conducted FDR control
on x1i and x2i respectively, using x2i and xi1 as the auxiliary covariate.

In the analysis, we compare the proposed OrderShapeEM, robust method
that incorporates auxiliary information (SABHA) and method that does
not incorporate auxiliary information (ST). As BH was outperformed by
ST and Adaptive SeqStep by SABHA, we only included ST and SABHA
in the comparison. AdaPT was not able to complete the analysis within 24
hours and was not included either. The results are summarized in Figure
3. From Figure 3(a), we observe that at the same FDR level, the proposed
OrderShapeEM made significantly more discoveries than SABHA and ST.
SABHA procedure, which incorporates the auxiliary information, picked up
more SNPs than the ST procedure. The performance of OrderShapeEM
is consistent with the weak signal scenario, where a significant increase in
power has been observed (Figure 2(b)). Due to disease heterogeneity, signals
in the genetic association studies are usually very weak. Thus, it can be
extremely helpful to incorporate auxiliary information to improve power.
The power difference becomes even larger at higher target FDR level. Figure
3(b) shows similar patterns.

To further examine the identified SNPs based on different methods, Figure
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Fig 3: Comparison of the number of discoveries at different pre-specified
FDR level (left panels) as well as the estimates of π0 (middle panels) and
f1 (right panels).

(a) Analysis of C4D data with CARDIoGRAM data as auxiliary
information; (b) Analysis of CARDIoGRAM data with C4D data as auxiliary information.
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Fig 4: Venn diagram showing the overlap of significant SNPs (FDR < 0.001)
between methods using or not using auxiliary information. Left to right: ST
procedure on C4D data; OrderShape EM on C4D data with CARDIoGRAM
data as auxiliary; OrderShapeEM on CARDIoGRAM data with C4D data
as auxiliary; and ST procedure on CARDIoGRAM data.
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4 shows the overlap of significant SNPs via the Venn diagram at FDR level
0.001. We observe that there was a significant overlap of associated SNPs be-
tween the two datasets, indicating a shared genetic architecture between the
two populations. By using auxiliary information, OrderShapeEM recovered
almost all the SNPs by ST procedure, in addition to many other SNPs that
were missed by the ST procedure. Interestingly, for the 19 + 21 = 40 SNPs
that were identified by OrderShapeEM only, most of them were located in
genes that had been reported being associated with phenotypes or diseases
related to the cardiovascular or metabolic system. It is well known that
metabolic disorders such as high blood cholesterol and triglyceride levels
are risk factors for CAD.

7. Summary and discussions. We have developed a covariate-adjusted
multiple testing procedure based on the Lfdr and shown that the oracle pro-
cedure is optimal in the sense of maximizing the ETP for a given value of
mFDR. We propose an adaptive procedure to estimate the prior probabili-
ties of being null that vary across different hypotheses and the distribution
function of the p-values under the alternative hypothesis. Our estimation
procedure is built on the isotonic regression which is tuning parameter free
and computationally fast. We prove that the proposed method provides
asymptotic FDR control when relevant consistent estimates are available.
We obtain some consistency results for the estimates of the prior probabil-
ities of being null and the alternative density under shape restrictions. In
finite samples, the proposed method outperforms several existing approaches
that exploit auxiliary information to boost power in multiple testing. The
gain in efficiency of the proposed procedure is due to the fact that we incor-
porate both the auxiliary information and the information across p-values
in an optimal way.

Our method has a competitive edge over competing methods when the
signal is weak and the auxiliary information is moderate/strong, a practically
important setting where power improvement is critical and possible with the
availability of informative prior. However, when the auxiliary information is
weak, our procedure could be less powerful than the BH/ST procedure. The
power loss is more severe under strong and sparse signals. To remedy the
power loss under these unfavorable conditions, we recommend testing the
informativeness of the prior order information before the application of our
method using, for example, the testing method from [24]. We could also
examine the π̂0 plot after running our algorithm. If π̂0’s lack variability,
which indicates the auxiliary information is very weak, our method could be
less powerful than BH/ST and we advise against using it.
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Our method is also robust across settings with a very moderate FDR
inflation under small feature sizes. However, there are some special cases
where our approach does not work well due to the violation of assumptions.
In the varying alternative scenario, as suggested by one of the reviewers, we
did observe some FDR inflation. We found this only happens when the order
information has inconsistent effects on the π0 and f1 (i.e., the more likely
the alternative hypothesis, the smaller the effect size). We did not find any
FDR inflation if the order information has consistent effects (i.e., the more
likely the alternative hypothesis, the larger the effect size). We believe such
inconsistent effects may be uncommon in practice. In the varying null sce-
nario, we observed a severe deterioration of the power of our method and it
has virtually no power when the signal is sparse. This is somewhat expected
since our approach assumes a uniformly distributed null p-value. Therefore,
we should examine the p-value distribution before applying our method. We
advise against using our method if we see a substantial deviation from the
uniform assumption based on the right half of the p-value distribution.

There are several future research directions. For example, it is desirable to
extend our method to incorporate other forms of structural information such
as group structure, spatial structure or tree/hierarchical structure. Also, the
proposed method is marginal based and it may no longer be optimal in the
presence of correlations. We leave these interesting topics for future research.
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8. Appendix. We provide proofs of all mathematical claims and addi-
tional simulation results.

Proof of Proposition 2.2. The following lemma can be proved using sim-
ilar arguments as in the proof of the (weak) Glivenko-Cantelli Theorem (see
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e.g. [49]) and we omit the details here. Define

Dm,0(λ) :=
1

m

m∑
i=1

1{Lfdri(xi) ≤ λ},

Dm,1(λ) :=
1

m

m∑
i=1

Lfdri(xi)1{Lfdri(xi) ≤ λ},

Rm(λ) = Dm,1(λ)/Dm,0(λ).

Lemma 8.1. Under Condition (C1), we have

sup
λ∈[0,1]

|Dm,0(λ)−D0(λ)| →p 0,

sup
λ∈[0,1]

|Dm,1(λ)−D1(λ)| →p 0,

sup
λ∈[0,1]

|Vm(λ)/m−D1(λ)| →p 0.

Lemma 8.2. Under Conditions (C1)-(C2),

sup
x≥λ∞

|Rm(x)−R(x)| →p 0,

and
sup
x≥λ∞

|Vm(x)/Dm,0(x)−R(x)| →p 0.

Proof of Lemma 8.2. By the monotonicity of D0, minx≥λ∞ D0(x) =
D0(λ∞) > 0 as D1(λ∞)/D0(λ∞) < α. Then we have∣∣∣∣Dm,1(x)

Dm,0(x)
− D1(x)

D0(x)

∣∣∣∣
=

∣∣∣∣(Dm,1(x)−D1(x))D0(x)−D1(x)(Dm,0(x)−D0(x))

D0(x)Dm,0(x)

∣∣∣∣
≤D0(1)|Dm,1(x)−D1(x)|+D1(1)|Dm,0(x)−D0(x)|

D0(λ∞){D0(x)− supλ≥λ∞ |Dm,0(λ)−D0(λ)|}

≤
D0(1) supλ≥λ∞ |Dm,1(λ)−D1(λ)|+D1(1) supλ≥λ∞ |Dm,0(λ)−D0(λ)|

D0(λ∞){D0(λ∞)− supλ≥λ∞ |Dm,0(λ)−D0(λ)|}
→p 0

uniformly for any x ≥ λ∞. Similar argument shows the other result.

Proof. Set e = α−R(λ∞). By Lemma 8.2,

P (|Rm(λ∞)−R(λ∞)| < e/2)→ 1,
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which implies that P (Rm(λ∞) < α) → 1. Thus P (λm ≥ λ∞) → 1 by the
definition of λm. Then we have

{Rm(λm)− Vm(λm)/Dm,0(λm)}
≥ inf
λ≥λ∞

{Rm(λ)− Vm(λ)/Dm,0(λ)}

= inf
λ≥λ∞

{Rm(λ)−R(λ) +R(λ)− Vm(λ)/Dm,0(λ)} = op(1)

by Lemma 8.2. As Rm(λm) ≤ α, this implies that

Vm(λm)/{Dm,0(λm) ∨ 1} ≤ Vm(λm)/Dm,0(λm) ≤ α+ op(1).

As Vm(λm)/{Dm,0(λm) ∨ 1} ≤ 1, by Lemma 8.3 below, we obtain

lim sup
m→+∞

FDRm(λm) = lim sup
m→+∞

E[Vm(λm)/{Dm,0(λm) ∨ 1}] ≤ α.

Lemma 8.3. Consider the random sequence {(Xm, Ym)}m. Suppose Xm ≤
C0 and Xm ≤ α+Ym, where Ym = op(1) and C0 is some constant. Then we
have

lim sup
m

E[Xm] ≤ α.

Proof of Lemma 8.3. Note that here exists a subsequence Xmk such
that lim supmE[Xm] = limk E[Xmk ]. Along this subsequence, we can pick
a further subsequence Ymkj such that Ymkj →

a.s. 0. Thus with probability
one,

lim sup
j

Xmkj
≤ lim sup

j
Ymkj + α = α.

As Xmkj
≤ C0, by Fatou’s Lemma,

lim sup
m

E[Xm] = lim sup
j

E[Xmkj
] ≤ E[lim sup

j
Xmkj

] ≤ α.

Proof of Theorem 2.3. Define

D̂m,0(λ) :=
1

m

m∑
i=1

1{L̂fdri(xi) ≤ λ},

D̂m,1(λ) :=
1

m

m∑
i=1

L̂fdri(xi)1{L̂fdri(xi) ≤ λ},

R̂m(λ) = D̂m,1(λ)/D̂m,0(λ).
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Lemma 8.4. Under Conditions (C1) and (C3), we have

sup
λ≥λ∞

∣∣∣D̂m,0(λ)−D0(λ)
∣∣∣→p 0,(26)

sup
λ≥λ∞

∣∣∣D̂m,1(λ)−D1(λ)
∣∣∣→p 0.(27)

Proof of Lemma 8.4. We only prove (27) as the proof for (26) is sim-
ilar. In view of Lemma 8.1, we only need to show that

sup
λ≥λ∞

∣∣∣D̂m,1(λ)−Dm,1(λ)
∣∣∣→p 0.

To this end, we note that

sup
λ≥λ∞

∣∣∣D̂m,1(λ)−Dm,1(λ)
∣∣∣

≤ sup
λ≥λ∞

∣∣∣∣∣ 1

m

m∑
i=1

L̂fdri(xi)1{L̂fdri(xi) ≤ λ} −
1

m

m∑
i=1

Lfdri(xi)1{L̂fdri(xi) ≤ λ}

∣∣∣∣∣
+ sup
λ≥λ∞

∣∣∣∣∣ 1

m

m∑
i=1

Lfdri(xi)1{L̂fdri(xi) ≤ λ} −
1

m

m∑
i=1

Lfdri(xi)1{Lfdri(xi) ≤ λ}

∣∣∣∣∣
≤m−1

m∑
i=1

|L̂fdri(xi)− Lfdri(xi)|+ sup
λ≥λ∞

1

m

m∑
i=1

|1{L̂fdri(xi) ≤ λ} − 1{Lfdri(xi) ≤ λ}|,

where the first term in the last line converges to zero in probability by
Condition (C3). To deal with the second term, notice that for any 0 < ε <
λ∞/2,

1

m

m∑
i=1

|1{L̂fdri(xi) ≤ λ} − 1{Lfdri(xi) ≤ λ}|

=
1

m

m∑
i=1

[
1{L̂fdri(xi) ≤ λ,Lfdri(xi) > λ}+ 1{Lfdri(xi) ≤ λ, L̂fdri(xi) > λ}

]
=

1

m

m∑
i=1

[
1{L̂fdri(xi) ≤ λ, λ+ ε ≥ Lfdri(xi) > λ}+ 1{λ− ε < Lfdri(xi) ≤ λ, L̂fdri(xi) > λ}

]
+

1

m

m∑
i=1

[
1{L̂fdri(xi) ≤ λ,Lfdri(xi) > λ+ ε}+ 1{Lfdri(xi) ≤ λ− ε, L̂fdri(xi) > λ}

]
≤ 1

m

m∑
i=1

1{λ− ε < Lfdri(xi) ≤ λ+ ε}+
1

mε

m∑
i=1

|L̂fdri(xi)− Lfdri(xi)|.
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Together with Lemma 8.1 and Condition (C3), we obtain for any 0 < ε <
λ∞/2,

J := sup
λ≥λ∞

1

m

m∑
i=1

|1{L̂fdri(xi) ≤ λ} − 1{Lfdri(xi) ≤ λ}|

≤ sup
λ≥λ∞

1

m

m∑
i=1

1{λ− ε < Lfdri(xi) ≤ λ+ ε}+
1

mε

m∑
i=1

|L̂fdri(xi)− Lfdri(xi)|

≤ sup
λ≥λ∞

|D0(λ+ ε)−D0(λ− ε)|+ 2 sup
λ∈[0,1]

|Dm,0(λ)−D0(λ)|

+
1

mε

m∑
i=1

|L̂fdri(xi)− Lfdri(xi)|

≤ sup
λ≥λ∞

|D0(λ+ ε)−D0(λ− ε)|+ op(1).

As ε can be arbitrarily small, supλ≥λ∞ |D0(λ+ ε)−D0(λ− ε)| can be made
small due to the (uniform) continuity of D0. Therefore, J = op(1) and thus
(27) holds.

Proof of Theorem 2.3. Using similar arguments as in the proof of
Lemma 8.2, we have

sup
λ≥λ∞

∣∣∣R̂m(λ)−R(λ)
∣∣∣→p 0.(28)

Following the proof of Proposition 2.2, we set e = a−R(λ∞). Then we have

|R̂m(λ∞)−R(λ∞)| ≤ sup
λ≥λ∞

∣∣∣R̂m(λ)−R(λ)
∣∣∣ < e/2,

with probability tending to one, which suggests that P (R̂m(λ∞) < α)→ 1.
Thus P (λ̂m ≥ λ∞) → 1 by the definition of λ̂m. Then on the event {λ̂m ≥
λ∞}, we have

|Vm(λ̂m)/Dm,0(λ̂m)− R̂m(λ̂m)|

≤ sup
λ≥λ∞

∣∣∣R̂m(λ)− Vm(λ)/Dm,0(λ)
∣∣∣

= sup
λ≥λ∞

∣∣∣R̂m(λ)−R(λ)
∣∣∣+ sup

λ≥λ∞
|R(λ)− Vm(λ)/Dm,0(λ)| = op(1),

by Lemma 8.2 and (28). As R̂m(λ̂m) ≤ α, this implies that

Vm(λ̂m)/{Dm,0(λ̂m) ∨ 1} ≤ α+ op(1).
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As Vm(λ̂m)/{Dm,0(λ̂m) ∨ 1} ≤ 1, by Lemma 8.3, we obtain

lim sup
m→+∞

FDRm(λ̂m) = lim sup
m→+∞

E[Vm(λ̂m)/{Dm,0(λ̂m) ∨ 1}] ≤ α.

Proof of Theorem 3.1.

Proof. As P (f0(xi) = f1(xi)) = 0, without loss of generality, we shall
assume that f0(xi) 6= f1(xi) for all i. Recall that φ(x, a) = af0(x) + (1 −
a)f1(x) and define

ρ(x, a) =
∂ log φ(x, a)

∂a
=
f0(x)− f1(x)

φ(x, a)
,

which is nonincreasing in a. As f0(xi) 6= f1(xi) for all i, it is straightforward
to see that for any 1 ≤ k ≤ l ≤ m,

∑l
i=k log φ(xi, a) is a strictly concave

function for 0 ≤ a ≤ 1. Let

âkl = argmax
a∈[0,1]

l∑
i=k

log φ(xi, a)

be the unique maximizer. According to Theorem 3.1 of [37], we have

π̂0i = max
1≤k≤i

min
i≤l≤m

âkl.

Our goal is to show that the event

π̂0,i0 = max
1≤k≤i0

min
i0≤l≤m

âkl = min
i0≤l≤m

max
1≤k≤i0

âkl < π0,i0 + ε

has probability tending to one.
To this end, we let B = B(i0, N) be the event that

∑i0+N
i=k ρ(xi, a) = 0

has a unique root 0 ≤ âk,i0+N < 1 for all 1 ≤ k ≤ i0, and note that

P

(
max

1≤k≤i0
âk,i0+N < π0,i0 + ε

)
≤ P (π̂0,i0 < π0,i0 + ε) .

On B, we have max1≤k≤i0 âk,i0+N < π0,i0 + ε if and only if

max
1≤k≤i0

i0+N∑
i=k

ρ(xi, π0,i0 + ε) < 0.(29)
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We see that (29) is equivalent to

i0+N∑
i=k

{ρ(xi, π0,i0)− ρ(xi, π0,i0 + ε)} >
i0+N∑
i=k

ρ(xi, π0,i0),(30)

for 1 ≤ k ≤ i0. Next we derive an upper bound for the RHS of (30). As
ρ(x, a) is nonincreasing in a and π0,i ≤ π0,i0 + ε/2 under the assumption in
the theorem, we have

i0+N∑
i=k

ρ(xi, π0,i0) ≤
i0+N∑
i=i0+1

ρ(xi, π0,i0) +

i0∑
i=k

ρ(xi, π0,i)

=

i0+N∑
i=i0+1

(ρ(xi, π0,i0)− ρ(xi, π0,i)) +

i0+N∑
i=k

ρ(xi, π0,i)

≤
i0+N∑
i=i0+1

(ρ(xi, π0,i0)− ρ(xi, π0,i0 + ε/2)) +

i0+N∑
i=k

ρ(xi, π0,i)

=

i0+N∑
i=i0+1

ε(f1(xi)− f0(xi))
2

2φ(xi, π0,i0)φ(xi, π0,i0 + ε/2)
+

i0+N∑
i=k

ρ(xi, π0,i).

Using this upper bound and the fact that

ρ(x, π0,i0)− ρ(x, π0,i0 + ε) =
f0(x)− f1(x)

φ(x, π0,i0)
− f0(x)− f1(x)

φ(x, π0,i0 + ε)

=
ε(f1(x)− f0(x))2

φ(x, π0,i0)φ(x, π0,i0 + ε)
,

we know (30) is implied by

i0+N∑
i=k

ε(f1(xi)− f0(xi))
2

φ(xi, π0,i0)φ(xi, π0,i0 + ε)
−

i0+N∑
i=i0+1

ε(f1(xi)− f0(xi))
2

2φ(xi, π0,i0)φ(xi, π0,i0 + ε/2)
>

i0+N∑
i=k

ρ(xi, π0,i).

(31)

Some algebra shows that the LHS of (31) is bounded from below by

i0+N∑
i=k

ε(f1(xi)− f0(xi))
2

2φ(xi, π0,i0 + ε/2)φ(xi, π0,i0 + ε)
≥

i0+N∑
i=k

ε(f1(xi)− f0(xi))
2

2(f0(xi) ∨ f1(xi))2
.
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Combining the above arguments, we get

P (π̂0,i0 < π0,i0 + ε, B)

≥P
(

max
1≤k≤i0

âk,i0+N < π0,i0 + ε, B

)
=P

(
i0+N∑
i=k

{ρ(xi, π0,i0)− ρ(xi, π0,i0 + ε)} >
i0+N∑
i=k

ρ(xi, π0,i0) for all 1 ≤ k ≤ i0, B

)

≥P

(
i0+N∑
i=k

ε(f1(xi)− f0(xi))
2

2(f0(xi) ∨ f1(xi))2
>

i0+N∑
i=k

ρ(xi, π0,i) for all 1 ≤ k ≤ i0

)
− P (Bc)

:=P (A)− P (Bc).

We first deal with P (A). Notice that ρ(xi, π0,i) is a sequence of independent
mean zero random variables with the variance

var(ρ(xi, π0i)) =

∫
(f0(x)− f1(x))2

π0if0(x) + (1− π0i)f1(x)
dx

≤
∫

(f0(x)− f1(x))2

{π0(0)f0(x)} ∨ {(1− π0(1))f1(x)}
dx

=

∫
π0(0)f0(x)>(1−π0(1))f1(x)

(f0(x)− f1(x))2

{π0(0)f0(x)} ∨ {(1− π0(1))f1(x)}
dx

+

∫
π0(0)f0(x)≤(1−π0(1))f1(x)

(f0(x)− f1(x))2

{π0(0)f0(x)} ∨ {(1− π0(1))f1(x)}
dx

≤
∫
π0(0)f0(x)>(1−π0(1))f1(x)

(f0(x)− f1(x))2

π0(0)f0(x)
dx

+

∫
π0(0)f0(x)≤(1−π0(1))f1(x)

(f0(x)− f1(x))2

(1− π0(1))f1(x)
dx

≤C1

∫
f0(x)dx+ C2

∫
f1(x)dx <∞,

for some constants C1, C2 > 0. By Lemma 3.1 of [1], for any η > 0, there
exists a large enough N such that,

P

(
max

1≤k≤i0

∣∣∣∣∣ 1

i0 +N − k + 1

i0+N∑
i=k

ρ(xi, π0,i)

∣∣∣∣∣ < εb

)
≥ 1−O

(
1

ε2N

)
,

for some constant

b ≤ E (f1(xi)− f0(xi))
2

4(f0(xi) ∨ f1(xi))2
.
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Set Xi = (f1(xi)−f0(xi))
2

(f0(xi)∨f1(xi))2 which is a bounded random variable, and X̃i =

EXi −Xi. Again by Lemma 3.1 of [1],

P

(
min

1≤k≤i0

1

i0 +N − k + 1

i0+N∑
i=k

Xi >
1

2
EX1

)

=P

(
max

1≤k≤i0

1

i0 +N − k + 1

i0+N∑
i=k

X̃i <
1

2
EX1

)

≥P

(
max

1≤k≤i0

∣∣∣∣∣ 1

i0 +N − k + 1

i0+N∑
i=k

X̃i

∣∣∣∣∣ < 1

2
EX1

)

>1−O
(

1

N

)
,

for large enough N. The above arguments thus imply that

P (A) ≥ 1−O
(

1

ε2N

)
.

We next deal with Bc i.e., there exists a 1 ≤ k ≤ i0 such that âk,i0+N = 1.
Clearly, we only need to consider the case where π0,i0 + ε < 1. In this case,
we have π0,i0+N ≤ π0(t′′) < π0,i0 + ε/2 < 1. If âk,i0+N = 1, as the maximizer
is unique, we have

i0+N∑
i=k

log φ(xi, 1) >

i0+N∑
i=k

log φ(xi, a)(32)

for any 0 ≤ a < 1. Under the assumption that
∫

(log fi(x))2fj(x)dx <∞ for
i, j = 0, 1, we have E[(log φ(xi, a))2] < ∞ uniformly over i and a ∈ [0, 1].
Note that for a ≥ π0i,

(E log φ(xi, a))′ =E
f0(xi)− f1(xi)

φ(xi, a)

=

∫
f0(x)− f1(x)

φ(x, a)
φ(x, π0i)dx

=

∫
f0(x)− f1(x)

φ(x, a)
φ(x, π0i)−

f0(x)− f1(x)

φ(x, π0i)
φ(x, π0i)dx

=

∫
(f0(x)− f1(x))2(π0i − a)

φ(x, a)
dx

≤(π0i − a)

∫
(f0(x)− f1(x))2

f0(x) ∨ f1(x)
dx := C0(π0i − a),
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where we have used the fact that
∫
f0(z)dz =

∫
f1(z)dz = 1. It is clear that

as a function of a, −E log φ(xi, a) is convex. Thus we get

C0(a− π0i)(1− a)− E log φ(xi, a) ≤− (E log φ(xi, a))′(1− a)− E log φ(xi, a)

≤− E log φ(xi, 1),

that is
E log φ(xi, a)− E log φ(xi, 1) ≥ C0(a− π0i)(1− a).

Now setting π0,i0 + ε < a∗ < 1 and using the fact that a∗ − π0i ≥ ε/2 for
i ≤ i0 +N , we obtain,

i0+N∑
i=k

(E log φ(xi, a
∗)− E log φ(xi, 1)) ≥C0(1− a∗)

i0+N∑
i=k

(a∗ − π0i)

≥C0(1− a∗)(i0 +N − k + 1)ε/2.

For ε0 < C0(1− a∗)ε/4, let

B(a) := max
1≤k≤i0

∣∣∣∣∣ 1

i0 +N − k + 1

i0+N∑
i=k

{log φ(xi, a)− E log φ(xi, a)}

∣∣∣∣∣ < ε0.

By Lemma 3.1 of [1], we have for large enough N ,

P (B(a∗) ∩B(1)) > 1−O
(

1

ε2N

)
.

Therefore on B(a∗) ∩B(1), we have

{there exists a 1 ≤ k ≤ i0 such that âk,i0+N = 1}

⊂ ∪i0k=1

{
i0+N∑
i=k

log φ(xi, 1) >

i0+N∑
i=k

log φ(xi, a
∗)

}

⊂ ∪i0k=1

{
1

i0 +N − k + 1

i0+N∑
i=k

E log φ(xi, 1) + 2ε0

>
1

i0 +N − k + 1

i0+N∑
i=k

E log φ(xi, a
∗)

}
⊂ ∪i0k=1 {2ε0 > C0(1− a∗)ε/2} = ∅.

Then we get P (Bc) ≤ O
(

1
ε2N

)
and thus

P (π̂0,i0 < π0,i0 + ε) ≥ 1−O
(

1

ε2N

)
.
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Using similar arguments, we can prove that

P (π̂0,i0 > π0,i0 − ε) ≥ 1−O
(

1

ε2N

)
.

Therefore, we obtain

P (|π̂0,i0 − π0,i0 | < ε) ≥ 1−O
(

1

ε2N

)
.

Proof of Corollary 3.2.

Proof. For any i1 ≤ i ≤ il, there exists a 2 ≤ k ≤ l such that ik−1 ≤
i ≤ ik. Using the monotonicity of π̂0,i and π0,i, we get

max
i1≤i≤il

|π̂0,i − π0,i| ≤ max
1≤k≤l

|π̂0,ik − π0,ik |+ ε.

Thus by Theorem 3.1, we have

P

(
max
i1≤i≤il

|π̂0,i − π0,i| < 2ε

)
≥ P

(
max
1≤i≤l

|π̂0,ik − π0,ik−1
| < ε

)
≥ 1−O

(
l

ε2N

)
.

Proof of Theorem 3.3. We provide some useful results from [48] and the
high-level idea before presenting the detailed proof.

Some useful results. We present some results from [48], which will play
an important role in the proof.

Recall that F denotes the class of densities on [0, 1]. Let Gm = {g =
(g1, . . . , gm) : gi ∈ F}. Below we shall drop the subscript m for notational
simplicity. Let ν be the Lebesgue measure (on [0, 1]) and Lr(ν) = {g :
[0, 1]→ R :

∫ 1
0 |g|

rdν <∞}. For g ∈ Lr(ν), write ‖g‖rr,ν =
∫ 1

0 |g|
rdν. We now

define the entropy with bracketing. Consider G′ ⊆ G. Let NB(δ,G′, Lr(ν))
be the smallest value of N such that there exists a collection of functions
{[gLj ,gUj ]}Nj=1 with gLj = (gL,1j , . . . , gL,mj ) and gUj = (gU,1j , . . . , gU,mj ) such

that for any g = (g1, . . . , gm) ∈ G′, there exists a 1 ≤ j ≤ N satis-
fying that gL,ij ≤ gi ≤ gU,ij for all 1 ≤ i ≤ m and ‖gLj − gUj ‖rr,ν,m :=

m−1
∑m

i=1 ‖g
L,i
j − g

U,i
j ‖rr,ν ≤ δ. Set NB(δ,G′, Lr(ν)) = +∞ if no finite set

of such brackets exists. Let HB(δ,G′, Lr(ν)) = logNB(δ,G′, Lr(ν)). Write
dP = (dP1, . . . , dPm) = (f1dν, . . . , fmdν) and let Ai be some constant. We
define HB(δ,G′, Lr(P)) in a similar way as HB(δ,G′, Lr(ν)) but with the
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norm ‖ · ‖rr,P,m = m−1
∑m

i=1 ‖ · ‖rr,Pi to characterize the distance between

gLj and gUj . Operation on vector-valued function should be interpreted as
applying the operation to each component of the vector-valued function.

Lemma 8.5 (Lemma 7.11 of [48]). Let

F = {f : [0,+∞)→ [0,+∞), f is decreasing , f ≤ F},

with F decreasing, F ≥ 1 and
∫
F 2(1+a)dν < ∞ for some a > 0. Then for

some A > 0,
HB(δ,F, L2(ν)) ≤ Aδ−1, for all δ > 0.

Below we present a modified version of Theorem 8.14 of [48], which is
sufficient for our application. Note that the result in Theorem 8.14 of [48] is
capable of dealing with dependent variables. However, to avoid unnecessary
complication, we shall present a result that is specialized to the case of
independent but non-identically distributed variables. We also mention that
the entropy condition is on the convex class (34), which is different from the
one in Theorem 8.14 of [48]. However, this change only requires a slightly
modification (see the arguments of Theorem 8.6 below and the proof of
Theorem 7.6 of [48]) of the proof in [48].

To state the result, let pi,θi be a density indexed by a parameter θi for
1 ≤ i ≤ m. Suppose we observe a set of random variables xi ∼ pi,θ0,i
independently for 1 ≤ i ≤ m and θ0 = (θ0,1, . . . , θ0,m) ∈ Θ for a given
parameter space Θ. Write pθ = (p1,θ1 , . . . , pm,θm) with θ = (θ1, . . . , θm). Let

θ̂ = (θ̂1, . . . , θ̂m) ∈ Θ be an estimator of θ0 such that

m∑
i=1

log pi,θ̂i(xi) ≥
m∑
i=1

log

(
pi,θ̂i(xi) + pi,θ0,i(xi)

2

)
.(33)

Note that the maximum likelihood estimator of θ0 automatically satisfies
the above condition. Define H2

m(pθ,pθ′) = m−1
∑m

i=1H
2(pi,θi , pi,θ′i) and

Gconv =

{
2pθ

pθ + pθ0
: θ ∈ Θ

}
.(34)

Let

JB(δ) :=

∫ δ

δ2/c
H1/2
B (u,Gconv, L2(pθ0))du ∨ δ(35)

for some large enough c.
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Theorem 8.6. Suppose that {pθ : θ ∈ Θ} is convex. Take Ψ(δ) ≥ JB(δ)
in such a way that Ψ(δ)/δ2 is a non-increasing function of δ. Then for a
universal constant c̃ and for

√
mδ2

m ≥ c̃Ψ(δm),(36)

we have for all δ ≥ δm that

P (Hm(pθ̂,pθ0) > δ) ≤ c̃ exp(−mδ2/c̃2).

Proof of Theorem 8.6. Let

Zi(θ) =
2pi,θi(xi)

pi,θi(xi) + pi,θ0,i(xi)
, 1 ≤ i ≤ m.

We first claim the following basic inequality

H2
m(pθ̂,pθ0) ≤ 1

m

m∑
i=1

(
Zi(θ̂)− P0,iZi(θ̂)

)
,(37)

P0,iZi(θ) =
∫ 2pi,θi
pi,θi+pi,θ0,i

pi,θ0,idν. Note that

0 ≤
m∑
i=1

logZi(θ̂) ≤
m∑
i=1

(
Zi(θ̂)− 1

)
=

m∑
i=1

(
Zi(θ̂)− P0,iZi(θ̂)

)
−

m∑
i=1

(1− P0,iZi(θ̂)),

where the first inequality follows from (33) and the second inequality follows
from the fact that log(x) ≤ x− 1 for x > 0. On the other hand, we have

m∑
i=1

(1− P0,iZi(θ̂)) =
m∑
i=1

∫ pi,θ0,i − pi,θ̂
pi,θ0,i + pi,θ̂i

pi,θ0,idν

=
m∑
i=1

1

2

∫ (pi,θ0,i − pi,θ̂)
2

pi,θ0,i + pi,θ̂i
dν ≥ H2

m(pθ̂,pθ0),

which gives (37). Applying the basic inequality and the peeling device, we
have

P (Hm(pθ̂,pθ0) > δ)

≤P

(
sup

θ∈Θ:Hm(pθ,pθ0 )>δ

1

m

m∑
i=1

{Zi(θ)− P0,iZi(θ)} −H2
m(pθ,pθ0) > 0

)

≤
S∑
s=0

P

(
sup

θ∈Θ:Hm(pθ,pθ0 )≤2s+1δ

1

m

m∑
i=1

{Zi(θ)− P0,iZi(θ)} > 22sδ2

)
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with S = min{s : 2s+1δ > 1}. Observe the connection between Zi(θ) and
Gconv. The entropy condition can be used to control the upper bound above.
The rest of the argument is similar to those in [48].

The high-level idea. To apply the above result, we shall take Θ = Ξ ×H
and θ = (π, f) ∈ Θ in the above theorem. Most parts of our proof is devoted
to showing the entropy condition (45). This is achieved in several steps. (1)
We first apply Lemma 8.5 to the class of functions defined in (40), which
implies a bound on the entropy of the class of functions GU,conv

k,i in (43). (2)

We then argue that one can construct the delta-bracketing set for GU,conv
k,i

with 2 ≤ i ≤ m based on the one for GU,conv
k,1 . Thus the entropy of GU,conv

k in

(42) is of the same order as that of GU,conv
k,i , which leads to (45) after some

algebra. (3) Under (45), (36) is satisfied with δ = Mm−1/3 for some large
enough M . The result thus follows from Theorem 8.6.

Proof. Consider the collection of mixture densities F = {f̃ = (f̃1, . . . , f̃m) :
f̃ i = π̃(i/m)f0 + (1− π̃(i/m))f̃1, π̃ ∈ Ξ, f̃1 ∈ H}. It is known that

HB(δ,Ξ, L2(µm)) ≤ A1/δ,(38)

where µm denotes the discrete probability measure with equal mass 1/m
on the grid {1/m, 2/m, . . . , 1}, see e.g. [49]. Let {[πLk , πUk ]}Nk=1 be the delta-
bracketing set for Ξ. For any π̃ ∈ Ξ and f̃1 ∈ H, there exists a 1 ≤ k ≤ N
such that

f̃L,ik := πLk (i/m)f0 + (1− πUk (i/m))f̃1 ≤π̃(i/m)f0 + (1− π̃(i/m))f̃1

≤πUk (i/m)f0 + (1− πLk (i/m))f̃1 := f̃U,ik .

(39)

We focus on the upper bound in the following analysis. For 1 ≤ k ≤ N , let

FLk = {(f̃L,1k , . . . , f̃L,mk ) : f̃1 ∈ H},

FUk = {(f̃U,1k , . . . , f̃U,mk ) : f̃1 ∈ H},

where f̃L,ik and f̃U,ik are defined in (39). Further define

GU
k,i =


(

f̃ if i

f̃ i + f i

)1/2

: f̃ i is the ith component of f̃ ∈ FUk

 .(40)
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Note that
(
f̃ if i

f̃ i+f i

)1/2
≤ (f i)1/2∨1. Under the assumption that

∫ 1
0 f

1+a
1 dν <

∞, we have sup1≤i≤m
∫

(f i)1+a ∨ 1dν <∞. Applying Lemma 8.5 with F =

(f i)1/2 ∨ 1, we know that

HB(δ,GU
k,i, L2(ν)) ≤ A3/δ.

Next we define

Gconv =

{
f̃

f̃ + f
: f̃ ∈ F

}
,(41)

GU,conv
k =

{
f̃

f̃ + f
: f̃ ∈ FUk

}
,(42)

GU,conv
k,i =

{
f̃ i

f̃ i + f i
: f̃ i is the ith component of f̃ ∈ FUk

}
.(43)

Our goal is to derive an upper bound for the entropy with bracketing of
Gconv, and then apply Theorem 8.6 to obtain the desired result. To this end,
we shall first derive the entropy with bracketing for the classes GU,conv

k,i and

GU,conv
k .

For f̃ i and g̃i being the ith components of f̃ and g̃ in FUk , we have∫ (
f̃ i

f̃ i + f i
− g̃i

g̃i + f i

)2

dPi

=

∫ 
(

f̃ i

f̃ i + f i

)1/2

−
(

g̃i

g̃i + f i

)1/2


2
(

f̃ i

f̃ i + f i

)1/2

+

(
g̃i

g̃i + f i

)1/2


2

dPi

≤4

∫ 
(

f̃ i

f̃ i + f i

)1/2

−
(

g̃i

g̃i + f i

)1/2


2

dPi

=4

∫ 
(

f̃ if i

f̃ i + f i

)1/2

−
(

g̃if i

g̃i + f i

)1/2


2

dν.

Hence we get

HB(2δ,GU,conv
k,i , L2(Pi)) ≤ HB(δ,GU

k,i, L2(ν)) ≤ A3/δ.

Below we argue that one can construct the delta-bracketing set for GU,conv
k,i

with 2 ≤ i ≤ m based on the one for GU,conv
k,1 . Consider f̃1 which is the ith
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component of f̃ ∈ FUk and a pair of functions (ζL, ζU ) such that

πUk (1/m)f0 + (1− πLk (1/m))ζL

πUk (1/m)f0 + (1− πLk (1/m))ζL + f i
≤

πUk (1/m)f0 + (1− πLk (1/m))f̃1

πUk (1/m)f0 + (1− πLk (1/m))f̃1 + f i

≤
πUk (1/m)f0 + (1− πLk (1/m))ζU

πUk (1/m)f0 + (1− πLk (1/m))ζU + f i

(44)

and∫ (
πUk (1/m)f0 + (1− πLk (1/m))ζL

πUk (1/m)f0 + (1− πLk (1/m))ζL + f i
−

πUk (1/m)f0 + (1− πLk (1/m))ζU

πUk (1/m)f0 + (1− πLk (1/m))ζU + f i

)2

dPi

=

∫ {
(1− πLk (1/m))(ζL − ζU )f i

(πUk (1/m)f0 + (1− πLk (1/m))ζL + f i)(πUk (1/m)f0 + (1− πLk (1/m))ζU + f i)

}2

dPi

≤δ2

Clearly, (44) implies that ζL ≤ f̃1 ≤ ζU . Moreover, (44) still holds if we
replace (πLk (1/m), πUk (1/m)) by (πLk (i/m), πUk (i/m)) for any 2 ≤ i ≤ m.
Using the following bounds (which hold as ε ≤ πLk , πUk ≤ 1− ε)

(1− πLk (i/m))

(1− πLk (1/m))
≤ 1,

πUk (1/m)f0 + (1− πLk (1/m))ζU + f i

πUk (i/m)f0 + (1− πLk (i/m))ζU + f i
≤
πUk (1/m)

πUk (i/m)
+

1− πUk (1/m)

1− πUk (i/m)
+ 1 ≤ C1,

πUk (1/m)f0 + (1− πLk (1/m))ζL + f i

πUk (i/m)f0 + (1− πLk (i/m))ζL + f i
≤
πUk (1/m)

πUk (i/m)
+

1− πUk (1/m)

1− πUk (i/m)
+ 1 ≤ C1,

for some constant C1 > 0, we can show that∫ (
πUk (i/m)f0 + (1− πLk (i/m))ζL

πUk (i/m)f0 + (1− πLk (i/m))ζL + f i
−

πUk (i/m)f0 + (1− πLk (i/m))ζU

πUk (i/m)f0 + (1− πLk (i/m))ζU + f i

)2

dPi

=

∫ {
(1− πLk (i/m))(ζL − ζU )f i

(πUk (i/m)f0 + (1− πLk (i/m))ζL + f i)(πUk (i/m)f0 + (1− πLk (i/m))ζU + f i)

}2

dPi

≤C4
1δ

2.

The above arguments suggest that we can construct the delta-bracketing set
for GU,conv

k,i with 2 ≤ i ≤ m based on the one for GU,conv
k,1 . Therefore, we have

HB(δ,GU,conv
k , L2(P)) ≤ A4/δ.
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Similarly, we can get

HB(δ,GL,conv
k , L2(P)) ≤ A5/δ,

where GL,conv
k is defined in a similar way as GU,conv

k but with f̃ ∈ FLk . For

any f̃ ∈ F, there exists a 1 ≤ k ≤ N and f̃L ∈ FLk and f̃U ∈ FUk such that

f̃L

f̃L + f
≤ f̃

f̃ + f
≤ f̃U

f̃U + f
.

Let {[bLi , cLi ]}N
L
k

i=1 and {[bUi , cUi ]}N
U
k

i=1 be the delta-bracketing sets for GL,conv
k

and GU,conv
k respectively. Then there exists a (i, j) such that

bLi ≤
f̃L

f̃L + f
≤ f̃

f̃ + f
≤ f̃U

f̃U + f
≤ cUj .

By the triangle inequality,

‖cUj − bLi ‖2,P,m ≤

∥∥∥∥∥cUj − f̃U

f̃U + f

∥∥∥∥∥
2,P,m

+

∥∥∥∥∥ f̃U

f̃U + f
− f̃

f̃ + f

∥∥∥∥∥
2,P,m

+

∥∥∥∥∥ f̃

f̃ + f
− f̃L

f̃L + f

∥∥∥∥∥
2,P,m

+

∥∥∥∥∥ f̃L

f̃L + f
− bLi

∥∥∥∥∥
2,P,m

≤

∥∥∥∥∥ f̃U

f̃U + f
− f̃

f̃ + f

∥∥∥∥∥
2,P,m

+

∥∥∥∥∥ f̃

f̃ + f
− f̃L

f̃L + f

∥∥∥∥∥
2,P,m

+ 2δ.

We focus on the first component of the first term. Note that∫ (
πUk (1/m)f0 + (1− πLk (1/m))f̃i

πUk (1/m)f0 + (1− πLk (1/m))f̃i + f i
− π(1/m)f0 + (1− π(1/m))f̃i

π(1/m)f0 + (1− π(1/m))f̃i + f i

)2

dPi

=

∫ {
(πUk (1/m)− π(1/m))f0f

i + (π(1/m)− πLk (1/m))f̃ if i

(πUk (1/m)f0 + (1− πLk (1/m))f̃i + f i)(π(1/m)f0 + (1− π(1/m))f̃i + f i)

}2

dPi

≤C2{(πUk (1/m)− π(1/m))2 + (π(1/m)− πLk (1/m))2},

for some constant C2 > 0. Hence we obtain

HB(δ,Gconv, L2(P)) ≤ A6/δ.

Note that ∫ δ

δ2/c
H1/2
B (u,Gconv, L2(P))du ≤ A7

√
δ.(45)
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Finally, we apply Theorem 8.6 (also see Theorem 7.6 of [48]). Consider
Θ = Ξ × H and θ = (π, f) ∈ Θ. In view of (45), (36) is satisfied with
δ = Mm−1/3 for some large enough M . Thus by Theorem 8.6, we have

P
(
Hm((π0, f1), (π̂0, f̂1)) > Mm−1/3

)
≤M1 exp(−M2m

1/3),

for some M1,M2 > 0.

Proof of Corollary 3.4.

Proof. Using (23), we obtain

1

m

m∑
i=1

∫
Lfdri(x)>dm

|L̂fdri(x)− Lfdri(x)|f i(x)dx

=
1

m

m∑
i=1

∫
Lfdri(x)>dm

|L̂fdri(x)− Lfdri(x)|π0(i/m)f0(x)

Lfdri(x)
dx

≤ C

mdm

m∑
i=1

∫ 1

0
|L̂fdri(x)− Lfdri(x)|dx = op(1),

for some constant C > 0 and a sequence dm with dm = o(1) and m−1/3/dm =
o(1). As D0 in Condition (C1) is continuous at 0,

1

m

m∑
i=1

∫
Lfdri(x)≤dm

|L̂fdri(x)− Lfdri(x)|f i(x)dx ≤ 1

m

m∑
i=1

P (Lfdri(xi) ≤ dm)

=D0(dm) + op(1) = op(1).

Thus we have

1

m

m∑
i=1

∫ 1

0
|L̂fdri(x)− Lfdri(x)|f i(x)dx = op(1).(46)

In view of (46), to justify Condition (C3), it suffices to show the following
uniform law of large numbers,

sup
π∈Ξ,f∈H

∣∣∣∣∣ 1

m

m∑
i=1

(gi(xi)− E[gi(xi)])

∣∣∣∣∣ = op(1),(47)

where

gi(xi) =

∣∣∣∣ π(i/m)f0(xi)

π(i/m)f0(xi) + (1− π(i/m))f(xi)
− Lfdri(xi)

∣∣∣∣ .
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We justify this claim in Lemma 8.7 below. By (46) and (47), we must have

1

m

m∑
i=1

|L̂fdri(xi)− Lfdri(xi)| = op(1),(48)

which verifies Condition (C3).

Lemma 8.7. For Ξ and H as defined in Section 3.3, we have

sup
π∈Ξ,f∈H

∣∣∣∣∣ 1

m

m∑
i=1

(gi(xi)− E[gi(xi)])

∣∣∣∣∣ = Op(m
−1/3).

Proof of Lemma 8.7. Let

g+,i(xi) =

(
π(i/m)f0(xi)

π(i/m)f0(xi) + (1− π(i/m))f(xi)
− Lfdri(xi)

)
+

,

g−,i(xi) =

(
Lfdri(x)− π(i/m)f0(xi)

π(i/m)f0(xi) + (1− π(i/m))f(xi)

)
+

,

where (a)+ = a∨0. Note that gi(xi) = g+,i(xi)+g−,i(xi). Thus we just need
to show that

sup
π∈Ξ,f∈H

∣∣∣∣∣ 1

m

m∑
i=1

(g+,i(xi)− E[g+,i(xi)])

∣∣∣∣∣ = Op(m
−1/3),(49)

sup
π∈Ξ,f∈H

∣∣∣∣∣ 1

m

m∑
i=1

(g−,i(xi)− E[g−,i(xi)])

∣∣∣∣∣ = Op(m
−1/3).(50)

We only prove (49) as the arguments for (50) is essentially the same. Below
we shall adopt the notation defined in the proof of Theorem 3.3. Note that
g+,i(xi) is a decreasing function of f(xi) and increasing function of π(i/m).
Recall from (38) that

HB(δ,Ξ, L1(µm)) ≤ A1/δ(51)

for some A1 > 0, where µm denotes the discrete probability measure with
equal mass 1/m at the grids {1/m, 2/m, . . . , 1} Let {[πLk , πUk ]}N1

k=1 be a δ-
bracketing set for Ξ such that m−1

∑m
i=1 |πLk (i/m)− πUk (i/m)| ≤ δ. Suppose

π ∈ [πLk , π
U
k ]. Note that

1

m

m∑
i=1

(g+,i(xi)− E[g+,i(xi)])

≤ 1

m

m∑
i=1

{(
fU,ik (xi)− Lfdri(xi)

)
+
− E

(
fL,ik (xi)− Lfdri(xi)

)
+

}
,
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where for any given f ∈ H, we define

fU,ik :=
πUk (i/m)f0

πUk (i/m)f0 + (1− πUk (i/m))f
, fL,ik :=

πLk (i/m)f0

πLk (i/m)f0 + (1− πLk (i/m))f
.

(52)

This observation motivates us to consider the following classes of vector-
valued functions

FUk := {fUk = (fU,1k , . . . , fU,mk ) : f ∈ H},

FLk := {fLk = (fL,1k , . . . , fL,mk ) : f ∈ H},

where fU,ik and fL,ik are defined in (52). Note that FUk,i = {fU,ik : f ∈ H}
is a class of increasing functions that are bounded from below and above.
Thus HB(δ,FUk,i, L1(Pi)) ≤ A2/δ. Using similar arguments as in the proof of

Theorem 3.3, we can construct the delta-bracketing sets for FUk,i with 2 ≤ i ≤
m based on the one for FUk,1. Thus we have HB(δ,FUk , L1(P)) ≤ A3/δ and

similarly HB(δ,FLk , L1(P)) ≤ A4/δ. Let {[ζLk,j , ζUk,j ]}
N2
j=1 and {[ξLk,j , ξUk,j ]}

N3
j=1

be the δ-bracketing sets for FUk and FLk respectively. For fUk ∈ FUk and
fLk ∈ FLk , there exists (j, l) such that ζLk,j ≤ fUk ≤ ζUk,j and ξLk,l ≤ fLk ≤ ξUk,l.
Thus we get

1

m

m∑
i=1

(g+,i(xi)− E[g+,i(xi)])

≤ 1

m

m∑
i=1

{(
fU,ik (xi)− Lfdri(xi)

)
+
− E

(
fL,ik (xi)− Lfdri(xi)

)
+

}

≤ 1

m

m∑
i=1

{(
ζU,ik,j (xi)− Lfdri(xi)

)
+
− E

(
ξL,ik,l (xi)− Lfdri(xi)

)
+

}

≤ 1

m

m∑
i=1

{(
ζU,ik,j (xi)− Lfdri(xi)

)
+
− E

(
ζU,ik,j (xi)− Lfdri(xi)

)
+

}
+ C1δ,
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for some C1 > 0. Here we have used the fact that

1

m

m∑
i=1

{
E
(
ζU,ik,j (xi)− Lfdri(xi)

)
+
− E

(
ξL,ik,l (xi)− Lfdri(xi)

)
+

}

≤ 1

m

m∑
i=1

E
∣∣∣ζU,ik,j (xi)− ξL,ik,l (xi)

∣∣∣
≤ 1

m

m∑
i=1

E
∣∣∣ζU,ik,j (xi)− fU,ik (xi) + fU,ik (xi)− fL,ik (xi) + fL,ik (xi)− ξL,ik,l (xi)

∣∣∣
≤ 1

m

m∑
i=1

E
∣∣∣fU,ik (xi)− fL,ik (xi)

∣∣∣+ 2δ

≤C
m

m∑
i=1

∣∣πUk (i/m)− πLk (i/m)
∣∣+ 2δ = (C + 2)δ,

for some C > 0. Similarly,

1

m

m∑
i=1

(g+,i(xi)− E[g+,i(xi)])

≥ 1

m

m∑
i=1

{(
fL,ik (xi)− Lfdri(xi)

)
+
− E

(
fU,ik (xi)− Lfdri(xi)

)
+

}

≥ 1

m

m∑
i=1

{(
ξL,ik,l (xi)− Lfdri(xi)

)
+
− E

(
ξL,ik,l (xi)− Lfdri(xi)

)
+

}
− C2δ.

By the Hoeffding’s inequality, we have for any 1 ≤ k ≤ N1, 1 ≤ j ≤ N2 and
1 ≤ l ≤ N3,

P

(
1

m

m∑
i=1

{(
ζU,ik,j (xi)− Lfdri(xi)

)
+
− E

(
ζU,ik,j (xi)− Lfdri(xi)

)
+

}
≥ ε

)
≤ exp(−C3mε

2),

P

(
1

m

m∑
i=1

{(
ξL,ik,l (xi)− Lfdri(xi)

)
+
− E

(
ξL,ik,l (xi)− Lfdri(xi)

)
+

}
≥ ε

)
≤ exp(−C3mε

2),
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for some C3 > 0. Hence we get

P

(
sup

π∈Ξ,f∈H

∣∣∣∣∣ 1

m

m∑
i=1

(g+,i(xi)− E[g+,i(xi)])

∣∣∣∣∣ > ε

)

≤P

(
max

1≤k≤N1,1≤j≤N2

1

m

m∑
i=1

{(
ζU,ik,j (xi)− Lfdri(xi)

)
+
− E

(
ζU,ik,j (xi)− Lfdri(xi)

)
+

}
> ε− C1δ

)

+ P

(
max

1≤k≤N1,1≤l≤N3

1

m

m∑
i=1

{(
ζL,ik,l (xi)− Lfdri(xi)

)
+
− E

(
ζL,ik,l (xi)− Lfdri(xi)

)
+

}
< C2δ − ε

)
≤2 exp

{
−C3m(ε− δC1 ∨ C2)2 + (A1 +A3 ∨A4)/δ

}
,

where we have used the union bound and the Hoeffding’s inequality to obtain
the second inequality. The result follows by choosing ε = C4m

−1/3 and
δ = m−1/3 for some large enough C4.

Proof of Theorem 3.5.

Proof. We first show that λ̂m →p λ0. Recall from (28) that

sup
λ≥λ∞

∣∣∣R̂m(λ)−R(λ)
∣∣∣→p 0.

For any small enough ε > 0, by the definition of λ0, we have infλ0+ε≤λ≤1R(λ) >
α. Therefore,

P ( inf
λ0+ε≤λ≤1

R̂m(λ) > α) ≤ P (λ̂m < λ0 + ε)→ 1.

On the other hand, as R(λ0 − ε) < α, we have

P (R̂m(λ0 − ε) < α) ≤ P (λ̂m ≥ λ0 − ε)→ 1.

Combing the above arguments, we get λ̂m →p λ0. Next, following the argu-
ments in the proof of Lemma 8.4, we have

sup
λ≥λ∞/2

∣∣∣∣∣ 1

m

m∑
i=1

1{θi = 1, L̂fdri(xi) ≤ λ} −D2(λ)

∣∣∣∣∣→p 0.

As λ0 ≥ λ∞, P (λ̂m > λ∞/2)→ 1. Thus we get

1

m

m∑
i=1

1{θi = 1, L̂fdri(xi) ≤ λ̂m} −D2(λ̂m)→p 0.

By the continuity of D2, we have D2(λ̂m) →p D2(λ0). The conclusion thus
follows.
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Derivation of the EM-algorithm from the full data likelihood. The EM
algorithm can be motivated by the full data likelihood that has access to
hidden/latent variables. To see this, we note that the full log-likelihood of
{(xi, θi) : i = 1, 2 . . . ,m} is given by

log p(x,θ) =
m∑
i=1

log{(1− θi)f0(xi) + θif1(xi)}

+
m∑
i=1

{(1− θi) log(π0i) + θi log(1− π0i)},

where x = (x1, . . . , xm) and θ = (θ1, . . . , θm). Let Π(t) = (π̂
(t)
01 , . . . , π̂

(t)
0m).

We note that the posterior distribution of θi given x, f1 and Π is equal to

Bernoulli(1 − Q(t)
i ), where Q

(t)
i = π̂

(t)
0i f0(xi)/{π̂(t)

0i f0(xi) + (1 − π̂(t)
0i )f1(xi)}.

The EM algorithm seeks to find the MLE of the marginal likelihood by
iteratively applying these two steps:
E-step: Define

D(f1,Π|f (t)
1 ,Π(t)) =E

θ|f (t)
1 ,Π(t) [log p(x,θ)]

=

m∑
i=1

{
Q

(t)
i log f0(xi) + (1−Q(t)

i ) log f1(xi)
}

+

m∑
i=1

{
Q

(t)
i log πi + (1−Q(t)

i ) log(1− πi)
}

as the expected value of the log-likelihood function with resepect to the

current conditional distribution of θ given the current estimates f
(t)
1 and

Π(t).
M-step: Find the parameters that maximize D(f1,Π|f (t)

1 ,Π(t)). Equivalently,
we have

Π̂ = arg max
Π∈M

m∑
i=1

{
Q

(t)
i log πi + (1−Q(t)

i ) log(1− πi)
}

= arg min
Π∈M

m∑
i=1

(
Q

(t)
i − πi

)2
,

f
(t+1)
1 = arg max

f̃1∈H

m∑
i=1

(1−Q(t)
i ) log f̃1(xi).

Competing methods. A classic procedure for multiple testing is the BH
procedure proposed in [5]. We now briefly describe the BH procedure. Let
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x(1) ≤ . . . ≤ x(m) be the order statistics of the p-values x1, . . . , xm. Given a
control level α ∈ (0, 1), let

k = max

{
i ∈ {0, 1, . . . ,m+ 1} : x(i) ≤ α

i

m

}
,

where x0 = 0 and x(m+1) = 1. The BH procedure rejects all hypotheses for
which xi ≤ x(k). If k = 0, then no hypotheses will be rejected. It has been
shown that the BH procedure controls the FDR at the level απ0, where π0

is the proportion of null hypothesis. R function p.adjust in the base stats
package is used to obtain results based on the BH procedure. To improve
power, [43] (ST) estimates the proportion of null hypothesis

π̂(λ) = min

{
1,

#{xi > λ; i = 1, . . . ,m}
m(1− λ)

}
,

where λ is a tuning parameter. Let

k = max

{
i ∈ {0, 1, . . . ,m+ 1} : x(i) ≤

α

π̂(λ)

i

m

}
.

The ST procedure rejects all hypotheses for which xi ≤ x(k). If k = 0, no
hypotheses will be rejected. The bioconductor R package qvalue is used to
obtain results based on the ST procedure.

To incorporate auxiliary information in a data-adaptive way, [34] proposed
the structure adaptive BH algorithm (SABHA). Specifically, given a target
FDR level α, a threshold τ ∈ [0, 1], and values π̂01, . . . , π̂0m ∈ [0, 1], where
π̂0i represents an estimated probability that the ith test corresponds to a
null, define

k = max

{
i ∈ {1, . . . ,m}, xi ≤

(
α

π̂0i

i

m

)
∧ τ
}
.

Reject hypotheses with corresponding p-value xi satisfying

xi ≤
(
α

π̂0i

k

m

)
∧ τ.

We use the code provided in [34] to implement SABHA. [31] proposed to
use two parameters to estimate proportion of null hypothesis and number
of rejections (Adaptive SeqStep). Specifically, let A(λ, k) =

∑k
i=1 I(xi > λ)

count p-values exceeding the threshold λ within the first k ordered hypothe-
ses and R(s, k) =

∑k
i=1 I(xi ≤ s) count number of rejections within the
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first k ordered hypotheses. Then the proportion of null hypotheses can be
estimated by

π̂(λ, k) =
1 +A(λ, k)

n(1− λ)
.

The Adaptive SeqStep procedure thus works as follows: for some 0 ≤ s ≤
λ ≤ 1, reject all hypotheses with xi ≤ s and H(i), i = 1, . . . , k̂AS , where H(i)

are ordered hypotheses based on p-values, and

k̂AS = max {k : FDPAS(k; s, λ) ≤ α} ,

where

FDPAS(k; s, λ) =
s

1− λ
1 +A(λ, k)

R(s, k) ∨ 1
.

We use the code provided in [31] for implementation. We also compare
to the adaptive p-value thresholding procedure (AdaPT) [30] and use the
“adapt glm” function in R package “adaptMT” (v0.2.1.9000) with natural
splines of 6 d.f. as covariates for both the null probability and the alterna-
tive distribution. OrderShapeEM, AdaPT, SABHA and Adaptive SeqStep
are multiple testing procedures that incorporate auxiliary information.

We evaluate the performance based on FDR control (empirical FDR) and
power (true positive rate, i.e., number of true positives divided by number of
alternatives) with the target FDR level α = 0.05. Results are averaged over
100 replications (except for the global null where the number of replications
is 2,000) and the 95% confidence interval are reported.

Additional simulation results. Figure 5 shows the numerical results when
z-values under the alternative hypothesis are from the non-central gamma
distribution. Figure 7 shows the numerical results when there is noise in
the auxiliary information. Figure 8 compares OrderShapeEM to SABHA+,
which uses the SABHA rejection rule and the mixing probabilities estimated
by OrderShapeEM. The setting is the same as Figure 2. Figure 9 and Figure
10 show the numerical results under a lower signal density and under a global
null, respectively. Figure 11 and Figure 12 show the numerical results under
varying f1 and varying f0 respectively. Figure 13 shows the performance with
m = 500, 100, 2000. Figure 14 shows the FDR control for AdaPT without
the correction term (AdaPT+).
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Fig 5: Performance under skewed alternative distribution.
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(b) power comparison

Weak Signal Moderate Signal Strong Signal

5%
 S

ignal
10%

 S
ignal

20%
 S

ignal

Weak Moderate Strong Weak Moderate Strong Weak Moderate Strong

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

0.00

0.25

0.50

0.75

Order Informativeness

Tr
ue

 P
os

iti
ve

 R
at

e

Method

OrderShapeEM

AdaPT

SABHA

AdaptiveSeqStep

BH

ST

57



Fig 6: Performance under correlated hypotheses.

(a) FDR control
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(b) power comparison
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Fig 7: Performance under noisy auxiliary information.

(a) FDR control
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(b) power comparison
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Fig 8: The effect of the optimal rejection rule.

(a) FDR control
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(b) power comparison
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Fig 9: Performance under a lower signal density (1%).
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(b) power comparison
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Fig 10: FDR control under the global null.
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Fig 11: Performance under varying f1.

(a) FDR control
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(b) power comparison
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Fig 12: Performance under varying f0.

(a) FDR control
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(b) power comparison
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Fig 13: Performance under normal alternative distribution with m =
500, 100, 2000.
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Fig 14: Inadequate FDR control for AdaPT without the correction term
(AdaPT+).
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